mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 08:17:01 +00:00
Update closest_pair_of_points.py (#1109)
This commit is contained in:
parent
d21b4cfb48
commit
762482dc40
|
@ -1,55 +1,54 @@
|
|||
"""
|
||||
The algorithm finds distance between closest pair of points
|
||||
The algorithm finds distance between closest pair of points
|
||||
in the given n points.
|
||||
Approach used -> Divide and conquer
|
||||
The points are sorted based on Xco-ords and
|
||||
Approach used -> Divide and conquer
|
||||
The points are sorted based on Xco-ords and
|
||||
then based on Yco-ords separately.
|
||||
And by applying divide and conquer approach,
|
||||
And by applying divide and conquer approach,
|
||||
minimum distance is obtained recursively.
|
||||
|
||||
>> Closest points can lie on different sides of partition.
|
||||
This case handled by forming a strip of points
|
||||
This case handled by forming a strip of points
|
||||
whose Xco-ords distance is less than closest_pair_dis
|
||||
from mid-point's Xco-ords. Points sorted based on Yco-ords
|
||||
from mid-point's Xco-ords. Points sorted based on Yco-ords
|
||||
are used in this step to reduce sorting time.
|
||||
Closest pair distance is found in the strip of points. (closest_in_strip)
|
||||
|
||||
min(closest_pair_dis, closest_in_strip) would be the final answer.
|
||||
|
||||
Time complexity: O(n * log n)
|
||||
"""
|
||||
|
||||
"""
|
||||
doctests
|
||||
>>> euclidean_distance_sqr([1,2],[2,4])
|
||||
5
|
||||
>>> dis_between_closest_pair([[1,2],[2,4],[5,7],[8,9],[11,0]],5)
|
||||
5
|
||||
>>> dis_between_closest_in_strip([[1,2],[2,4],[5,7],[8,9],[11,0]],5)
|
||||
85
|
||||
>>> points = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)]
|
||||
>>> print("Distance:", closest_pair_of_points(points, len(points)))
|
||||
"Distance: 1.4142135623730951"
|
||||
Time complexity: O(n * log n)
|
||||
"""
|
||||
|
||||
|
||||
def euclidean_distance_sqr(point1, point2):
|
||||
"""
|
||||
>>> euclidean_distance_sqr([1,2],[2,4])
|
||||
5
|
||||
"""
|
||||
return (point1[0] - point2[0]) ** 2 + (point1[1] - point2[1]) ** 2
|
||||
|
||||
|
||||
def column_based_sort(array, column = 0):
|
||||
"""
|
||||
>>> column_based_sort([(5, 1), (4, 2), (3, 0)], 1)
|
||||
[(3, 0), (5, 1), (4, 2)]
|
||||
"""
|
||||
return sorted(array, key = lambda x: x[column])
|
||||
|
||||
|
||||
|
||||
def dis_between_closest_pair(points, points_counts, min_dis = float("inf")):
|
||||
""" brute force approach to find distance between closest pair points
|
||||
"""
|
||||
brute force approach to find distance between closest pair points
|
||||
|
||||
Parameters :
|
||||
points, points_count, min_dis (list(tuple(int, int)), int, int)
|
||||
|
||||
Returns :
|
||||
Parameters :
|
||||
points, points_count, min_dis (list(tuple(int, int)), int, int)
|
||||
|
||||
Returns :
|
||||
min_dis (float): distance between closest pair of points
|
||||
|
||||
>>> dis_between_closest_pair([[1,2],[2,4],[5,7],[8,9],[11,0]],5)
|
||||
5
|
||||
|
||||
"""
|
||||
|
||||
for i in range(points_counts - 1):
|
||||
|
@ -61,14 +60,17 @@ def dis_between_closest_pair(points, points_counts, min_dis = float("inf")):
|
|||
|
||||
|
||||
def dis_between_closest_in_strip(points, points_counts, min_dis = float("inf")):
|
||||
""" closest pair of points in strip
|
||||
"""
|
||||
closest pair of points in strip
|
||||
|
||||
Parameters :
|
||||
points, points_count, min_dis (list(tuple(int, int)), int, int)
|
||||
|
||||
Returns :
|
||||
Parameters :
|
||||
points, points_count, min_dis (list(tuple(int, int)), int, int)
|
||||
|
||||
Returns :
|
||||
min_dis (float): distance btw closest pair of points in the strip (< min_dis)
|
||||
|
||||
>>> dis_between_closest_in_strip([[1,2],[2,4],[5,7],[8,9],[11,0]],5)
|
||||
85
|
||||
"""
|
||||
|
||||
for i in range(min(6, points_counts - 1), points_counts):
|
||||
|
@ -82,29 +84,32 @@ def dis_between_closest_in_strip(points, points_counts, min_dis = float("inf")):
|
|||
def closest_pair_of_points_sqr(points_sorted_on_x, points_sorted_on_y, points_counts):
|
||||
""" divide and conquer approach
|
||||
|
||||
Parameters :
|
||||
points, points_count (list(tuple(int, int)), int)
|
||||
|
||||
Returns :
|
||||
(float): distance btw closest pair of points
|
||||
Parameters :
|
||||
points, points_count (list(tuple(int, int)), int)
|
||||
|
||||
Returns :
|
||||
(float): distance btw closest pair of points
|
||||
|
||||
>>> closest_pair_of_points_sqr([(1, 2), (3, 4)], [(5, 6), (7, 8)], 2)
|
||||
8
|
||||
"""
|
||||
|
||||
# base case
|
||||
if points_counts <= 3:
|
||||
return dis_between_closest_pair(points_sorted_on_x, points_counts)
|
||||
|
||||
|
||||
# recursion
|
||||
mid = points_counts//2
|
||||
closest_in_left = closest_pair_of_points_sqr(points_sorted_on_x,
|
||||
points_sorted_on_y[:mid],
|
||||
closest_in_left = closest_pair_of_points_sqr(points_sorted_on_x,
|
||||
points_sorted_on_y[:mid],
|
||||
mid)
|
||||
closest_in_right = closest_pair_of_points_sqr(points_sorted_on_y,
|
||||
points_sorted_on_y[mid:],
|
||||
closest_in_right = closest_pair_of_points_sqr(points_sorted_on_y,
|
||||
points_sorted_on_y[mid:],
|
||||
points_counts - mid)
|
||||
closest_pair_dis = min(closest_in_left, closest_in_right)
|
||||
|
||||
""" cross_strip contains the points, whose Xcoords are at a
|
||||
|
||||
"""
|
||||
cross_strip contains the points, whose Xcoords are at a
|
||||
distance(< closest_pair_dis) from mid's Xcoord
|
||||
"""
|
||||
|
||||
|
@ -113,21 +118,23 @@ def closest_pair_of_points_sqr(points_sorted_on_x, points_sorted_on_y, points_co
|
|||
if abs(point[0] - points_sorted_on_x[mid][0]) < closest_pair_dis:
|
||||
cross_strip.append(point)
|
||||
|
||||
closest_in_strip = dis_between_closest_in_strip(cross_strip,
|
||||
closest_in_strip = dis_between_closest_in_strip(cross_strip,
|
||||
len(cross_strip), closest_pair_dis)
|
||||
return min(closest_pair_dis, closest_in_strip)
|
||||
|
||||
|
||||
|
||||
def closest_pair_of_points(points, points_counts):
|
||||
"""
|
||||
>>> closest_pair_of_points([(2, 3), (12, 30)], len([(2, 3), (12, 30)]))
|
||||
28.792360097775937
|
||||
"""
|
||||
points_sorted_on_x = column_based_sort(points, column = 0)
|
||||
points_sorted_on_y = column_based_sort(points, column = 1)
|
||||
return (closest_pair_of_points_sqr(points_sorted_on_x,
|
||||
points_sorted_on_y,
|
||||
return (closest_pair_of_points_sqr(points_sorted_on_x,
|
||||
points_sorted_on_y,
|
||||
points_counts)) ** 0.5
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
points = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)]
|
||||
points = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)]
|
||||
print("Distance:", closest_pair_of_points(points, len(points)))
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user