mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-04-04 12:56:45 +00:00
Update closest_pair_of_points.py (#1109)
This commit is contained in:
parent
d21b4cfb48
commit
762482dc40
@ -19,30 +19,26 @@ min(closest_pair_dis, closest_in_strip) would be the final answer.
|
|||||||
Time complexity: O(n * log n)
|
Time complexity: O(n * log n)
|
||||||
"""
|
"""
|
||||||
|
|
||||||
"""
|
|
||||||
doctests
|
|
||||||
>>> euclidean_distance_sqr([1,2],[2,4])
|
|
||||||
5
|
|
||||||
>>> dis_between_closest_pair([[1,2],[2,4],[5,7],[8,9],[11,0]],5)
|
|
||||||
5
|
|
||||||
>>> dis_between_closest_in_strip([[1,2],[2,4],[5,7],[8,9],[11,0]],5)
|
|
||||||
85
|
|
||||||
>>> points = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)]
|
|
||||||
>>> print("Distance:", closest_pair_of_points(points, len(points)))
|
|
||||||
"Distance: 1.4142135623730951"
|
|
||||||
"""
|
|
||||||
|
|
||||||
|
|
||||||
def euclidean_distance_sqr(point1, point2):
|
def euclidean_distance_sqr(point1, point2):
|
||||||
|
"""
|
||||||
|
>>> euclidean_distance_sqr([1,2],[2,4])
|
||||||
|
5
|
||||||
|
"""
|
||||||
return (point1[0] - point2[0]) ** 2 + (point1[1] - point2[1]) ** 2
|
return (point1[0] - point2[0]) ** 2 + (point1[1] - point2[1]) ** 2
|
||||||
|
|
||||||
|
|
||||||
def column_based_sort(array, column = 0):
|
def column_based_sort(array, column = 0):
|
||||||
|
"""
|
||||||
|
>>> column_based_sort([(5, 1), (4, 2), (3, 0)], 1)
|
||||||
|
[(3, 0), (5, 1), (4, 2)]
|
||||||
|
"""
|
||||||
return sorted(array, key = lambda x: x[column])
|
return sorted(array, key = lambda x: x[column])
|
||||||
|
|
||||||
|
|
||||||
def dis_between_closest_pair(points, points_counts, min_dis = float("inf")):
|
def dis_between_closest_pair(points, points_counts, min_dis = float("inf")):
|
||||||
""" brute force approach to find distance between closest pair points
|
"""
|
||||||
|
brute force approach to find distance between closest pair points
|
||||||
|
|
||||||
Parameters :
|
Parameters :
|
||||||
points, points_count, min_dis (list(tuple(int, int)), int, int)
|
points, points_count, min_dis (list(tuple(int, int)), int, int)
|
||||||
@ -50,6 +46,9 @@ def dis_between_closest_pair(points, points_counts, min_dis = float("inf")):
|
|||||||
Returns :
|
Returns :
|
||||||
min_dis (float): distance between closest pair of points
|
min_dis (float): distance between closest pair of points
|
||||||
|
|
||||||
|
>>> dis_between_closest_pair([[1,2],[2,4],[5,7],[8,9],[11,0]],5)
|
||||||
|
5
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
for i in range(points_counts - 1):
|
for i in range(points_counts - 1):
|
||||||
@ -61,7 +60,8 @@ def dis_between_closest_pair(points, points_counts, min_dis = float("inf")):
|
|||||||
|
|
||||||
|
|
||||||
def dis_between_closest_in_strip(points, points_counts, min_dis = float("inf")):
|
def dis_between_closest_in_strip(points, points_counts, min_dis = float("inf")):
|
||||||
""" closest pair of points in strip
|
"""
|
||||||
|
closest pair of points in strip
|
||||||
|
|
||||||
Parameters :
|
Parameters :
|
||||||
points, points_count, min_dis (list(tuple(int, int)), int, int)
|
points, points_count, min_dis (list(tuple(int, int)), int, int)
|
||||||
@ -69,6 +69,8 @@ def dis_between_closest_in_strip(points, points_counts, min_dis = float("inf")):
|
|||||||
Returns :
|
Returns :
|
||||||
min_dis (float): distance btw closest pair of points in the strip (< min_dis)
|
min_dis (float): distance btw closest pair of points in the strip (< min_dis)
|
||||||
|
|
||||||
|
>>> dis_between_closest_in_strip([[1,2],[2,4],[5,7],[8,9],[11,0]],5)
|
||||||
|
85
|
||||||
"""
|
"""
|
||||||
|
|
||||||
for i in range(min(6, points_counts - 1), points_counts):
|
for i in range(min(6, points_counts - 1), points_counts):
|
||||||
@ -88,6 +90,8 @@ def closest_pair_of_points_sqr(points_sorted_on_x, points_sorted_on_y, points_co
|
|||||||
Returns :
|
Returns :
|
||||||
(float): distance btw closest pair of points
|
(float): distance btw closest pair of points
|
||||||
|
|
||||||
|
>>> closest_pair_of_points_sqr([(1, 2), (3, 4)], [(5, 6), (7, 8)], 2)
|
||||||
|
8
|
||||||
"""
|
"""
|
||||||
|
|
||||||
# base case
|
# base case
|
||||||
@ -104,7 +108,8 @@ def closest_pair_of_points_sqr(points_sorted_on_x, points_sorted_on_y, points_co
|
|||||||
points_counts - mid)
|
points_counts - mid)
|
||||||
closest_pair_dis = min(closest_in_left, closest_in_right)
|
closest_pair_dis = min(closest_in_left, closest_in_right)
|
||||||
|
|
||||||
""" cross_strip contains the points, whose Xcoords are at a
|
"""
|
||||||
|
cross_strip contains the points, whose Xcoords are at a
|
||||||
distance(< closest_pair_dis) from mid's Xcoord
|
distance(< closest_pair_dis) from mid's Xcoord
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@ -119,6 +124,10 @@ def closest_pair_of_points_sqr(points_sorted_on_x, points_sorted_on_y, points_co
|
|||||||
|
|
||||||
|
|
||||||
def closest_pair_of_points(points, points_counts):
|
def closest_pair_of_points(points, points_counts):
|
||||||
|
"""
|
||||||
|
>>> closest_pair_of_points([(2, 3), (12, 30)], len([(2, 3), (12, 30)]))
|
||||||
|
28.792360097775937
|
||||||
|
"""
|
||||||
points_sorted_on_x = column_based_sort(points, column = 0)
|
points_sorted_on_x = column_based_sort(points, column = 0)
|
||||||
points_sorted_on_y = column_based_sort(points, column = 1)
|
points_sorted_on_y = column_based_sort(points, column = 1)
|
||||||
return (closest_pair_of_points_sqr(points_sorted_on_x,
|
return (closest_pair_of_points_sqr(points_sorted_on_x,
|
||||||
@ -129,5 +138,3 @@ def closest_pair_of_points(points, points_counts):
|
|||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
points = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)]
|
points = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)]
|
||||||
print("Distance:", closest_pair_of_points(points, len(points)))
|
print("Distance:", closest_pair_of_points(points, len(points)))
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user