Update breadth_first_search_2.py (#7765)

* Cleanup the BFS

* Add both functions and timeit

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Add performace results as comment

* Update breadth_first_search_2.py

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
Andrey 2022-10-28 23:27:39 +03:00 committed by GitHub
parent fe5819c872
commit 762afc086f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -14,7 +14,9 @@ while Q is non-empty:
""" """
from __future__ import annotations from __future__ import annotations
from collections import deque
from queue import Queue from queue import Queue
from timeit import timeit
G = { G = {
"A": ["B", "C"], "A": ["B", "C"],
@ -26,12 +28,15 @@ G = {
} }
def breadth_first_search(graph: dict, start: str) -> set[str]: def breadth_first_search(graph: dict, start: str) -> list[str]:
""" """
>>> ''.join(sorted(breadth_first_search(G, 'A'))) Implementation of breadth first search using queue.Queue.
>>> ''.join(breadth_first_search(G, 'A'))
'ABCDEF' 'ABCDEF'
""" """
explored = {start} explored = {start}
result = [start]
queue: Queue = Queue() queue: Queue = Queue()
queue.put(start) queue.put(start)
while not queue.empty(): while not queue.empty():
@ -39,12 +44,44 @@ def breadth_first_search(graph: dict, start: str) -> set[str]:
for w in graph[v]: for w in graph[v]:
if w not in explored: if w not in explored:
explored.add(w) explored.add(w)
result.append(w)
queue.put(w) queue.put(w)
return explored return result
def breadth_first_search_with_deque(graph: dict, start: str) -> list[str]:
"""
Implementation of breadth first search using collection.queue.
>>> ''.join(breadth_first_search_with_deque(G, 'A'))
'ABCDEF'
"""
visited = {start}
result = [start]
queue = deque([start])
while queue:
v = queue.popleft()
for child in graph[v]:
if child not in visited:
visited.add(child)
result.append(child)
queue.append(child)
return result
def benchmark_function(name: str) -> None:
setup = f"from __main__ import G, {name}"
number = 10000
res = timeit(f"{name}(G, 'A')", setup=setup, number=number)
print(f"{name:<35} finished {number} runs in {res:.5f} seconds")
if __name__ == "__main__": if __name__ == "__main__":
import doctest import doctest
doctest.testmod() doctest.testmod()
print(breadth_first_search(G, "A"))
benchmark_function("breadth_first_search")
benchmark_function("breadth_first_search_with_deque")
# breadth_first_search finished 10000 runs in 0.20999 seconds
# breadth_first_search_with_deque finished 10000 runs in 0.01421 seconds