Consolidate the two existing kNN implementations (#8903)

* Add type hints to k_nearest_neighbours.py

* Refactor k_nearest_neighbours.py into class

* Add documentation to k_nearest_neighbours.py

* Use heap-based priority queue for k_nearest_neighbours.py

* Delete knn_sklearn.py

* updating DIRECTORY.md

* Use optional args in k_nearest_neighbours.py for demo purposes

* Fix wrong function arg in k_nearest_neighbours.py

---------

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
Tianyi Zheng 2023-09-27 08:01:18 -04:00 committed by GitHub
parent 5830b29e7e
commit 76767d2f09
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 74 additions and 76 deletions

View File

@ -507,7 +507,6 @@
* [Gradient Descent](machine_learning/gradient_descent.py) * [Gradient Descent](machine_learning/gradient_descent.py)
* [K Means Clust](machine_learning/k_means_clust.py) * [K Means Clust](machine_learning/k_means_clust.py)
* [K Nearest Neighbours](machine_learning/k_nearest_neighbours.py) * [K Nearest Neighbours](machine_learning/k_nearest_neighbours.py)
* [Knn Sklearn](machine_learning/knn_sklearn.py)
* [Linear Discriminant Analysis](machine_learning/linear_discriminant_analysis.py) * [Linear Discriminant Analysis](machine_learning/linear_discriminant_analysis.py)
* [Linear Regression](machine_learning/linear_regression.py) * [Linear Regression](machine_learning/linear_regression.py)
* Local Weighted Learning * Local Weighted Learning

View File

@ -1,58 +1,88 @@
"""
k-Nearest Neighbours (kNN) is a simple non-parametric supervised learning
algorithm used for classification. Given some labelled training data, a given
point is classified using its k nearest neighbours according to some distance
metric. The most commonly occurring label among the neighbours becomes the label
of the given point. In effect, the label of the given point is decided by a
majority vote.
This implementation uses the commonly used Euclidean distance metric, but other
distance metrics can also be used.
Reference: https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
"""
from collections import Counter from collections import Counter
from heapq import nsmallest
import numpy as np import numpy as np
from sklearn import datasets from sklearn import datasets
from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split
data = datasets.load_iris()
X = np.array(data["data"]) class KNN:
y = np.array(data["target"]) def __init__(
classes = data["target_names"] self,
train_data: np.ndarray[float],
X_train, X_test, y_train, y_test = train_test_split(X, y) train_target: np.ndarray[int],
class_labels: list[str],
) -> None:
def euclidean_distance(a, b):
""" """
Gives the euclidean distance between two points Create a kNN classifier using the given training data and class labels
>>> euclidean_distance([0, 0], [3, 4]) """
self.data = zip(train_data, train_target)
self.labels = class_labels
@staticmethod
def _euclidean_distance(a: np.ndarray[float], b: np.ndarray[float]) -> float:
"""
Calculate the Euclidean distance between two points
>>> KNN._euclidean_distance(np.array([0, 0]), np.array([3, 4]))
5.0 5.0
>>> euclidean_distance([1, 2, 3], [1, 8, 11]) >>> KNN._euclidean_distance(np.array([1, 2, 3]), np.array([1, 8, 11]))
10.0 10.0
""" """
return np.linalg.norm(np.array(a) - np.array(b)) return np.linalg.norm(a - b)
def classify(self, pred_point: np.ndarray[float], k: int = 5) -> str:
def classifier(train_data, train_target, classes, point, k=5):
""" """
Classifies the point using the KNN algorithm Classify a given point using the kNN algorithm
k closest points are found (ranked in ascending order of euclidean distance) >>> train_X = np.array(
Params: ... [[0, 0], [1, 0], [0, 1], [0.5, 0.5], [3, 3], [2, 3], [3, 2]]
:train_data: Set of points that are classified into two or more classes ... )
:train_target: List of classes in the order of train_data points >>> train_y = np.array([0, 0, 0, 0, 1, 1, 1])
:classes: Labels of the classes >>> classes = ['A', 'B']
:point: The data point that needs to be classified >>> knn = KNN(train_X, train_y, classes)
>>> point = np.array([1.2, 1.2])
>>> X_train = [[0, 0], [1, 0], [0, 1], [0.5, 0.5], [3, 3], [2, 3], [3, 2]] >>> knn.classify(point)
>>> y_train = [0, 0, 0, 0, 1, 1, 1]
>>> classes = ['A','B']; point = [1.2,1.2]
>>> classifier(X_train, y_train, classes,point)
'A' 'A'
""" """
data = zip(train_data, train_target) # Distances of all points from the point to be classified
# List of distances of all points from the point to be classified distances = (
distances = [] (self._euclidean_distance(data_point[0], pred_point), data_point[1])
for data_point in data: for data_point in self.data
distance = euclidean_distance(data_point[0], point) )
distances.append((distance, data_point[1]))
# Choosing 'k' points with the least distances. # Choosing k points with the shortest distances
votes = [i[1] for i in sorted(distances)[:k]] votes = (i[1] for i in nsmallest(k, distances))
# Most commonly occurring class among them
# is the class into which the point is classified # Most commonly occurring class is the one into which the point is classified
result = Counter(votes).most_common(1)[0][0] result = Counter(votes).most_common(1)[0][0]
return classes[result] return self.labels[result]
if __name__ == "__main__": if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4])) import doctest
doctest.testmod()
iris = datasets.load_iris()
X = np.array(iris["data"])
y = np.array(iris["target"])
iris_classes = iris["target_names"]
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
iris_point = np.array([4.4, 3.1, 1.3, 1.4])
classifier = KNN(X_train, y_train, iris_classes)
print(classifier.classify(iris_point, k=3))

View File

@ -1,31 +0,0 @@
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
# Load iris file
iris = load_iris()
iris.keys()
print(f"Target names: \n {iris.target_names} ")
print(f"\n Features: \n {iris.feature_names}")
# Train set e Test set
X_train, X_test, y_train, y_test = train_test_split(
iris["data"], iris["target"], random_state=4
)
# KNN
knn = KNeighborsClassifier(n_neighbors=1)
knn.fit(X_train, y_train)
# new array to test
X_new = [[1, 2, 1, 4], [2, 3, 4, 5]]
prediction = knn.predict(X_new)
print(
f"\nNew array: \n {X_new}\n\nTarget Names Prediction: \n"
f" {iris['target_names'][prediction]}"
)