diff --git a/computer_vision/intensity_based_segmentation.py b/computer_vision/intensity_based_segmentation.py new file mode 100644 index 000000000..7f2b1141a --- /dev/null +++ b/computer_vision/intensity_based_segmentation.py @@ -0,0 +1,62 @@ +# Source: "https://www.ijcse.com/docs/IJCSE11-02-03-117.pdf" + +# Importing necessary libraries +import matplotlib.pyplot as plt +import numpy as np +from PIL import Image + + +def segment_image(image: np.ndarray, thresholds: list[int]) -> np.ndarray: + """ + Performs image segmentation based on intensity thresholds. + + Args: + image: Input grayscale image as a 2D array. + thresholds: Intensity thresholds to define segments. + + Returns: + A labeled 2D array where each region corresponds to a threshold range. + + Example: + >>> img = np.array([[80, 120, 180], [40, 90, 150], [20, 60, 100]]) + >>> segment_image(img, [50, 100, 150]) + array([[1, 2, 3], + [0, 1, 2], + [0, 1, 1]], dtype=int32) + """ + # Initialize segmented array with zeros + segmented = np.zeros_like(image, dtype=np.int32) + + # Assign labels based on thresholds + for i, threshold in enumerate(thresholds): + segmented[image > threshold] = i + 1 + + return segmented + + +if __name__ == "__main__": + # Load the image + image_path = "path_to_image" # Replace with your image path + original_image = Image.open(image_path).convert("L") + image_array = np.array(original_image) + + # Define thresholds + thresholds = [50, 100, 150, 200] + + # Perform segmentation + segmented_image = segment_image(image_array, thresholds) + + # Display the results + plt.figure(figsize=(10, 5)) + + plt.subplot(1, 2, 1) + plt.title("Original Image") + plt.imshow(image_array, cmap="gray") + plt.axis("off") + + plt.subplot(1, 2, 2) + plt.title("Segmented Image") + plt.imshow(segmented_image, cmap="tab20") + plt.axis("off") + + plt.show()