mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 16:27:02 +00:00
Added A* algorithm (#1913)
* a* algorithm * changes after build error * intent changes * fix after review * ImportMissmatchError * Build failed fix * doctest changes * doctest changes
This commit is contained in:
parent
eef6393935
commit
77c3e5b74b
152
machine_learning/astar.py
Normal file
152
machine_learning/astar.py
Normal file
|
@ -0,0 +1,152 @@
|
|||
import numpy as np
|
||||
|
||||
'''
|
||||
The A* algorithm combines features of uniform-cost search and pure
|
||||
heuristic search to efficiently compute optimal solutions.
|
||||
A* algorithm is a best-first search algorithm in which the cost
|
||||
associated with a node is f(n) = g(n) + h(n),
|
||||
where g(n) is the cost of the path from the initial state to node n and
|
||||
h(n) is the heuristic estimate or the cost or a path
|
||||
from node n to a goal.A* algorithm introduces a heuristic into a
|
||||
regular graph-searching algorithm,
|
||||
essentially planning ahead at each step so a more optimal decision
|
||||
is made.A* also known as the algorithm with brains
|
||||
'''
|
||||
|
||||
|
||||
class Cell(object):
|
||||
'''
|
||||
Class cell represents a cell in the world which have the property
|
||||
position : The position of the represented by tupleof x and y
|
||||
co-ordinates initially set to (0,0)
|
||||
parent : This contains the parent cell object which we visited
|
||||
before arrinving this cell
|
||||
g,h,f : The parameters for constructing the heuristic function
|
||||
which can be any function. for simplicity used line
|
||||
distance
|
||||
'''
|
||||
def __init__(self):
|
||||
self.position = (0, 0)
|
||||
self.parent = None
|
||||
|
||||
self.g = 0
|
||||
self.h = 0
|
||||
self.f = 0
|
||||
'''
|
||||
overrides equals method because otherwise cell assign will give
|
||||
wrong results
|
||||
'''
|
||||
def __eq__(self, cell):
|
||||
return self.position == cell.position
|
||||
|
||||
def showcell(self):
|
||||
print(self.position)
|
||||
|
||||
|
||||
class Gridworld(object):
|
||||
|
||||
'''
|
||||
Gridworld class represents the external world here a grid M*M
|
||||
matrix
|
||||
w : create a numpy array with the given world_size default is 5
|
||||
'''
|
||||
|
||||
def __init__(self, world_size=(5, 5)):
|
||||
self.w = np.zeros(world_size)
|
||||
self.world_x_limit = world_size[0]
|
||||
self.world_y_limit = world_size[1]
|
||||
|
||||
def show(self):
|
||||
print(self.w)
|
||||
|
||||
'''
|
||||
get_neighbours
|
||||
As the name suggests this function will return the neighbours of
|
||||
the a particular cell
|
||||
'''
|
||||
def get_neigbours(self, cell):
|
||||
neughbour_cord = [
|
||||
(-1, -1), (-1, 0), (-1, 1), (0, -1),
|
||||
(0, 1), (1, -1), (1, 0), (1, 1)]
|
||||
current_x = cell.position[0]
|
||||
current_y = cell.position[1]
|
||||
neighbours = []
|
||||
for n in neughbour_cord:
|
||||
x = current_x + n[0]
|
||||
y = current_y + n[1]
|
||||
if (
|
||||
(x >= 0 and x < self.world_x_limit) and
|
||||
(y >= 0 and y < self.world_y_limit)):
|
||||
c = Cell()
|
||||
c.position = (x, y)
|
||||
c.parent = cell
|
||||
neighbours.append(c)
|
||||
return neighbours
|
||||
|
||||
'''
|
||||
Implementation of a start algorithm
|
||||
world : Object of the world object
|
||||
start : Object of the cell as start position
|
||||
stop : Object of the cell as goal position
|
||||
'''
|
||||
|
||||
|
||||
def astar(world, start, goal):
|
||||
'''
|
||||
>>> p = Gridworld()
|
||||
>>> start = Cell()
|
||||
>>> start.position = (0,0)
|
||||
>>> goal = Cell()
|
||||
>>> goal.position = (4,4)
|
||||
>>> astar(p, start, goal)
|
||||
[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)]
|
||||
'''
|
||||
_open = []
|
||||
_closed = []
|
||||
_open.append(start)
|
||||
|
||||
while _open:
|
||||
min_f = np.argmin([n.f for n in _open])
|
||||
current = _open[min_f]
|
||||
_closed.append(_open.pop(min_f))
|
||||
if current == goal:
|
||||
break
|
||||
for n in world.get_neigbours(current):
|
||||
for c in _closed:
|
||||
if c == n:
|
||||
continue
|
||||
n.g = current.g + 1
|
||||
x1, y1 = n.position
|
||||
x2, y2 = goal.position
|
||||
n.h = (y2 - y1)**2 + (x2 - x1)**2
|
||||
n.f = n.h + n.g
|
||||
|
||||
for c in _open:
|
||||
if c == n and c.f < n.f:
|
||||
continue
|
||||
_open.append(n)
|
||||
path = []
|
||||
while current.parent is not None:
|
||||
path.append(current.position)
|
||||
current = current.parent
|
||||
path.append(current.position)
|
||||
path = path[::-1]
|
||||
return path
|
||||
|
||||
if __name__ == '__main__':
|
||||
'''
|
||||
sample run
|
||||
'''
|
||||
# object for the world
|
||||
p = Gridworld()
|
||||
# stat position and Goal
|
||||
start = Cell()
|
||||
start.position = (0, 0)
|
||||
goal = Cell()
|
||||
goal.position = (4, 4)
|
||||
print("path from {} to {} ".format(start.position, goal.position))
|
||||
s = astar(p, start, goal)
|
||||
# Just for visual Purpose
|
||||
for i in s:
|
||||
p.w[i] = 1
|
||||
print(p.w)
|
Loading…
Reference in New Issue
Block a user