mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-24 05:21:09 +00:00
Added A* algorithm (#1913)
* a* algorithm * changes after build error * intent changes * fix after review * ImportMissmatchError * Build failed fix * doctest changes * doctest changes
This commit is contained in:
parent
eef6393935
commit
77c3e5b74b
152
machine_learning/astar.py
Normal file
152
machine_learning/astar.py
Normal file
|
@ -0,0 +1,152 @@
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
'''
|
||||||
|
The A* algorithm combines features of uniform-cost search and pure
|
||||||
|
heuristic search to efficiently compute optimal solutions.
|
||||||
|
A* algorithm is a best-first search algorithm in which the cost
|
||||||
|
associated with a node is f(n) = g(n) + h(n),
|
||||||
|
where g(n) is the cost of the path from the initial state to node n and
|
||||||
|
h(n) is the heuristic estimate or the cost or a path
|
||||||
|
from node n to a goal.A* algorithm introduces a heuristic into a
|
||||||
|
regular graph-searching algorithm,
|
||||||
|
essentially planning ahead at each step so a more optimal decision
|
||||||
|
is made.A* also known as the algorithm with brains
|
||||||
|
'''
|
||||||
|
|
||||||
|
|
||||||
|
class Cell(object):
|
||||||
|
'''
|
||||||
|
Class cell represents a cell in the world which have the property
|
||||||
|
position : The position of the represented by tupleof x and y
|
||||||
|
co-ordinates initially set to (0,0)
|
||||||
|
parent : This contains the parent cell object which we visited
|
||||||
|
before arrinving this cell
|
||||||
|
g,h,f : The parameters for constructing the heuristic function
|
||||||
|
which can be any function. for simplicity used line
|
||||||
|
distance
|
||||||
|
'''
|
||||||
|
def __init__(self):
|
||||||
|
self.position = (0, 0)
|
||||||
|
self.parent = None
|
||||||
|
|
||||||
|
self.g = 0
|
||||||
|
self.h = 0
|
||||||
|
self.f = 0
|
||||||
|
'''
|
||||||
|
overrides equals method because otherwise cell assign will give
|
||||||
|
wrong results
|
||||||
|
'''
|
||||||
|
def __eq__(self, cell):
|
||||||
|
return self.position == cell.position
|
||||||
|
|
||||||
|
def showcell(self):
|
||||||
|
print(self.position)
|
||||||
|
|
||||||
|
|
||||||
|
class Gridworld(object):
|
||||||
|
|
||||||
|
'''
|
||||||
|
Gridworld class represents the external world here a grid M*M
|
||||||
|
matrix
|
||||||
|
w : create a numpy array with the given world_size default is 5
|
||||||
|
'''
|
||||||
|
|
||||||
|
def __init__(self, world_size=(5, 5)):
|
||||||
|
self.w = np.zeros(world_size)
|
||||||
|
self.world_x_limit = world_size[0]
|
||||||
|
self.world_y_limit = world_size[1]
|
||||||
|
|
||||||
|
def show(self):
|
||||||
|
print(self.w)
|
||||||
|
|
||||||
|
'''
|
||||||
|
get_neighbours
|
||||||
|
As the name suggests this function will return the neighbours of
|
||||||
|
the a particular cell
|
||||||
|
'''
|
||||||
|
def get_neigbours(self, cell):
|
||||||
|
neughbour_cord = [
|
||||||
|
(-1, -1), (-1, 0), (-1, 1), (0, -1),
|
||||||
|
(0, 1), (1, -1), (1, 0), (1, 1)]
|
||||||
|
current_x = cell.position[0]
|
||||||
|
current_y = cell.position[1]
|
||||||
|
neighbours = []
|
||||||
|
for n in neughbour_cord:
|
||||||
|
x = current_x + n[0]
|
||||||
|
y = current_y + n[1]
|
||||||
|
if (
|
||||||
|
(x >= 0 and x < self.world_x_limit) and
|
||||||
|
(y >= 0 and y < self.world_y_limit)):
|
||||||
|
c = Cell()
|
||||||
|
c.position = (x, y)
|
||||||
|
c.parent = cell
|
||||||
|
neighbours.append(c)
|
||||||
|
return neighbours
|
||||||
|
|
||||||
|
'''
|
||||||
|
Implementation of a start algorithm
|
||||||
|
world : Object of the world object
|
||||||
|
start : Object of the cell as start position
|
||||||
|
stop : Object of the cell as goal position
|
||||||
|
'''
|
||||||
|
|
||||||
|
|
||||||
|
def astar(world, start, goal):
|
||||||
|
'''
|
||||||
|
>>> p = Gridworld()
|
||||||
|
>>> start = Cell()
|
||||||
|
>>> start.position = (0,0)
|
||||||
|
>>> goal = Cell()
|
||||||
|
>>> goal.position = (4,4)
|
||||||
|
>>> astar(p, start, goal)
|
||||||
|
[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)]
|
||||||
|
'''
|
||||||
|
_open = []
|
||||||
|
_closed = []
|
||||||
|
_open.append(start)
|
||||||
|
|
||||||
|
while _open:
|
||||||
|
min_f = np.argmin([n.f for n in _open])
|
||||||
|
current = _open[min_f]
|
||||||
|
_closed.append(_open.pop(min_f))
|
||||||
|
if current == goal:
|
||||||
|
break
|
||||||
|
for n in world.get_neigbours(current):
|
||||||
|
for c in _closed:
|
||||||
|
if c == n:
|
||||||
|
continue
|
||||||
|
n.g = current.g + 1
|
||||||
|
x1, y1 = n.position
|
||||||
|
x2, y2 = goal.position
|
||||||
|
n.h = (y2 - y1)**2 + (x2 - x1)**2
|
||||||
|
n.f = n.h + n.g
|
||||||
|
|
||||||
|
for c in _open:
|
||||||
|
if c == n and c.f < n.f:
|
||||||
|
continue
|
||||||
|
_open.append(n)
|
||||||
|
path = []
|
||||||
|
while current.parent is not None:
|
||||||
|
path.append(current.position)
|
||||||
|
current = current.parent
|
||||||
|
path.append(current.position)
|
||||||
|
path = path[::-1]
|
||||||
|
return path
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
'''
|
||||||
|
sample run
|
||||||
|
'''
|
||||||
|
# object for the world
|
||||||
|
p = Gridworld()
|
||||||
|
# stat position and Goal
|
||||||
|
start = Cell()
|
||||||
|
start.position = (0, 0)
|
||||||
|
goal = Cell()
|
||||||
|
goal.position = (4, 4)
|
||||||
|
print("path from {} to {} ".format(start.position, goal.position))
|
||||||
|
s = astar(p, start, goal)
|
||||||
|
# Just for visual Purpose
|
||||||
|
for i in s:
|
||||||
|
p.w[i] = 1
|
||||||
|
print(p.w)
|
Loading…
Reference in New Issue
Block a user