mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 16:27:02 +00:00
Pi digit extraction algorithm (#1996)
* added pi digit extraction formula * updating DIRECTORY.md * fixed typo in a comment * updated bbp_formula.py * Update maths/bbp_formula.py Co-authored-by: Christian Clauss <cclauss@me.com> * Update maths/bbp_formula.py Co-authored-by: Christian Clauss <cclauss@me.com> * Update bbp_formula.py * Update and rename bbp_formula.py to bailey_borwein_plouffe.py * updating DIRECTORY.md * calculate * "".join(bailey_borwein_plouffe(i) for i in range(1, 12)) * Update bailey_borwein_plouffe.py * Update bailey_borwein_plouffe.py Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com> Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
parent
7a8696cd6d
commit
77f3888b71
|
@ -300,6 +300,7 @@
|
|||
* [Average Mean](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mean.py)
|
||||
* [Average Median](https://github.com/TheAlgorithms/Python/blob/master/maths/average_median.py)
|
||||
* [Average Mode](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mode.py)
|
||||
* [Bailey Borwein Plouffe](https://github.com/TheAlgorithms/Python/blob/master/maths/bailey_borwein_plouffe.py)
|
||||
* [Basic Maths](https://github.com/TheAlgorithms/Python/blob/master/maths/basic_maths.py)
|
||||
* [Binary Exp Mod](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exp_mod.py)
|
||||
* [Binary Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation.py)
|
||||
|
|
87
maths/bailey_borwein_plouffe.py
Normal file
87
maths/bailey_borwein_plouffe.py
Normal file
|
@ -0,0 +1,87 @@
|
|||
def bailey_borwein_plouffe(digit_position: int, precision: int = 1000) -> str:
|
||||
"""
|
||||
Implement a popular pi-digit-extraction algorithm known as the
|
||||
Bailey-Borwein-Plouffe (BBP) formula to calculate the nth hex digit of pi.
|
||||
Wikipedia page:
|
||||
https://en.wikipedia.org/wiki/Bailey%E2%80%93Borwein%E2%80%93Plouffe_formula
|
||||
@param digit_position: a positive integer representing the position of the digit to extract.
|
||||
The digit immediately after the decimal point is located at position 1.
|
||||
@param precision: number of terms in the second summation to calculate.
|
||||
A higher number reduces the chance of an error but increases the runtime.
|
||||
@return: a hexadecimal digit representing the digit at the nth position
|
||||
in pi's decimal expansion.
|
||||
|
||||
>>> "".join(bailey_borwein_plouffe(i) for i in range(1, 11))
|
||||
'243f6a8885'
|
||||
>>> bailey_borwein_plouffe(5, 10000)
|
||||
'6'
|
||||
>>> bailey_borwein_plouffe(-10)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Digit position must be a positive integer
|
||||
>>> bailey_borwein_plouffe(0)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Digit position must be a positive integer
|
||||
>>> bailey_borwein_plouffe(1.7)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Digit position must be a positive integer
|
||||
>>> bailey_borwein_plouffe(2, -10)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Precision must be a nonnegative integer
|
||||
>>> bailey_borwein_plouffe(2, 1.6)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Precision must be a nonnegative integer
|
||||
"""
|
||||
if (not isinstance(digit_position, int)) or (digit_position <= 0):
|
||||
raise ValueError("Digit position must be a positive integer")
|
||||
elif (not isinstance(precision, int)) or (precision < 0):
|
||||
raise ValueError("Please input a nonnegative integer for the precision")
|
||||
|
||||
# compute an approximation of (16 ** (n - 1)) * pi whose fractional part is mostly accurate
|
||||
sum_result = (
|
||||
4 * _subsum(digit_position, 1, precision)
|
||||
- 2 * _subsum(digit_position, 4, precision)
|
||||
- _subsum(digit_position, 5, precision)
|
||||
- _subsum(digit_position, 6, precision)
|
||||
)
|
||||
|
||||
# return the first hex digit of the fractional part of the result
|
||||
return hex(int((sum_result % 1) * 16))[2:]
|
||||
|
||||
|
||||
def _subsum(
|
||||
digit_pos_to_extract: int, denominator_addend: int, precision: int
|
||||
) -> float:
|
||||
# only care about first digit of fractional part; don't need decimal
|
||||
"""
|
||||
Private helper function to implement the summation
|
||||
functionality.
|
||||
@param digit_pos_to_extract: digit position to extract
|
||||
@param denominator_addend: added to denominator of fractions in the formula
|
||||
@param precision: same as precision in main function
|
||||
@return: floating-point number whose integer part is not important
|
||||
"""
|
||||
sum = 0.0
|
||||
for sum_index in range(digit_pos_to_extract + precision):
|
||||
denominator = 8 * sum_index + denominator_addend
|
||||
exponential_term = 0.0
|
||||
if sum_index < digit_pos_to_extract:
|
||||
# if the exponential term is an integer and we mod it by the denominator before
|
||||
# dividing, only the integer part of the sum will change; the fractional part will not
|
||||
exponential_term = pow(
|
||||
16, digit_pos_to_extract - 1 - sum_index, denominator
|
||||
)
|
||||
else:
|
||||
exponential_term = pow(16, digit_pos_to_extract - 1 - sum_index)
|
||||
sum += exponential_term / denominator
|
||||
return sum
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
Loading…
Reference in New Issue
Block a user