mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-04-06 05:45:53 +00:00
Rename variables
This commit is contained in:
parent
4522258980
commit
7808f21e1c
@ -1,7 +1,7 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
def cholesky_decomposition(a: np.ndarray) -> np.ndarray:
|
def cholesky_decomposition(matrix: np.ndarray) -> np.ndarray:
|
||||||
"""Return a Cholesky decomposition of the matrix A.
|
"""Return a Cholesky decomposition of the matrix A.
|
||||||
|
|
||||||
The Cholesky decomposition decomposes the square, positive definite matrix A
|
The Cholesky decomposition decomposes the square, positive definite matrix A
|
||||||
@ -42,11 +42,13 @@ def cholesky_decomposition(a: np.ndarray) -> np.ndarray:
|
|||||||
True
|
True
|
||||||
"""
|
"""
|
||||||
|
|
||||||
assert a.shape[0] == a.shape[1], f"Matrix A is not square, {a.shape=}"
|
assert (
|
||||||
assert np.allclose(a, a.T), "Matrix A must be symmetric"
|
matrix.shape[0] == matrix.shape[1]
|
||||||
|
), f"Input matrix is not square, {matrix.shape=}"
|
||||||
|
assert np.allclose(matrix, matrix.T), "Input matrix must be symmetric"
|
||||||
|
|
||||||
n = a.shape[0]
|
n = matrix.shape[0]
|
||||||
lower_triangle = np.tril(a)
|
lower_triangle = np.tril(matrix)
|
||||||
|
|
||||||
for i in range(n):
|
for i in range(n):
|
||||||
for j in range(i + 1):
|
for j in range(i + 1):
|
||||||
@ -65,9 +67,13 @@ def cholesky_decomposition(a: np.ndarray) -> np.ndarray:
|
|||||||
return lower_triangle
|
return lower_triangle
|
||||||
|
|
||||||
|
|
||||||
def solve_cholesky(lower_triangle: np.ndarray, y: np.ndarray) -> np.ndarray:
|
def solve_cholesky(
|
||||||
|
lower_triangle: np.ndarray,
|
||||||
|
right_hand_side: np.ndarray,
|
||||||
|
) -> np.ndarray:
|
||||||
"""Given a Cholesky decomposition L L^T = A of a matrix A, solve the
|
"""Given a Cholesky decomposition L L^T = A of a matrix A, solve the
|
||||||
system of equations A X = Y where Y is either a matrix or a vector.
|
system of equations A X = Y where the right-hand side Y is either
|
||||||
|
a matrix or a vector.
|
||||||
|
|
||||||
>>> L = np.array([[2, 0], [3, 4]], dtype=float)
|
>>> L = np.array([[2, 0], [3, 4]], dtype=float)
|
||||||
>>> Y = np.array([[22, 54], [81, 193]], dtype=float)
|
>>> Y = np.array([[22, 54], [81, 193]], dtype=float)
|
||||||
@ -84,13 +90,13 @@ def solve_cholesky(lower_triangle: np.ndarray, y: np.ndarray) -> np.ndarray:
|
|||||||
), "Matrix L is not lower triangular"
|
), "Matrix L is not lower triangular"
|
||||||
|
|
||||||
# Handle vector case by reshaping to matrix and then flattening again
|
# Handle vector case by reshaping to matrix and then flattening again
|
||||||
if len(y.shape) == 1:
|
if len(right_hand_side.shape) == 1:
|
||||||
return solve_cholesky(lower_triangle, y.reshape(-1, 1)).ravel()
|
return solve_cholesky(lower_triangle, right_hand_side.reshape(-1, 1)).ravel()
|
||||||
|
|
||||||
n = y.shape[0]
|
n = right_hand_side.shape[0]
|
||||||
|
|
||||||
# Solve L W = B for W
|
# Solve L W = Y for W
|
||||||
w = y.copy()
|
w = right_hand_side.copy()
|
||||||
for i in range(n):
|
for i in range(n):
|
||||||
for j in range(i):
|
for j in range(i):
|
||||||
w[i] -= lower_triangle[i, j] * w[j]
|
w[i] -= lower_triangle[i, j] * w[j]
|
||||||
|
Loading…
x
Reference in New Issue
Block a user