diff --git a/computer_vision/haralick_descriptors.py b/computer_vision/haralick_descriptors.py new file mode 100644 index 000000000..1a86d84ea --- /dev/null +++ b/computer_vision/haralick_descriptors.py @@ -0,0 +1,431 @@ +""" +https://en.wikipedia.org/wiki/Image_texture +https://en.wikipedia.org/wiki/Co-occurrence_matrix#Application_to_image_analysis +""" +import imageio.v2 as imageio +import numpy as np + + +def root_mean_square_error(original: np.ndarray, reference: np.ndarray) -> float: + """Simple implementation of Root Mean Squared Error + for two N dimensional numpy arrays. + + Examples: + >>> root_mean_square_error(np.array([1, 2, 3]), np.array([1, 2, 3])) + 0.0 + >>> root_mean_square_error(np.array([1, 2, 3]), np.array([2, 2, 2])) + 0.816496580927726 + >>> root_mean_square_error(np.array([1, 2, 3]), np.array([6, 4, 2])) + 3.1622776601683795 + """ + return np.sqrt(((original - reference) ** 2).mean()) + + +def normalize_image( + image: np.ndarray, cap: float = 255.0, data_type: np.dtype = np.uint8 +) -> np.ndarray: + """ + Normalizes image in Numpy 2D array format, between ranges 0-cap, + as to fit uint8 type. + + Args: + image: 2D numpy array representing image as matrix, with values in any range + cap: Maximum cap amount for normalization + data_type: numpy data type to set output variable to + Returns: + return 2D numpy array of type uint8, corresponding to limited range matrix + + Examples: + >>> normalize_image(np.array([[1, 2, 3], [4, 5, 10]]), + ... cap=1.0, data_type=np.float64) + array([[0. , 0.11111111, 0.22222222], + [0.33333333, 0.44444444, 1. ]]) + >>> normalize_image(np.array([[4, 4, 3], [1, 7, 2]])) + array([[127, 127, 85], + [ 0, 255, 42]], dtype=uint8) + """ + normalized = (image - np.min(image)) / (np.max(image) - np.min(image)) * cap + return normalized.astype(data_type) + + +def normalize_array(array: np.ndarray, cap: float = 1) -> np.ndarray: + """Normalizes a 1D array, between ranges 0-cap. + + Args: + array: List containing values to be normalized between cap range. + cap: Maximum cap amount for normalization. + Returns: + return 1D numpy array, corresponding to limited range array + + Examples: + >>> normalize_array(np.array([2, 3, 5, 7])) + array([0. , 0.2, 0.6, 1. ]) + >>> normalize_array(np.array([[5], [7], [11], [13]])) + array([[0. ], + [0.25], + [0.75], + [1. ]]) + """ + diff = np.max(array) - np.min(array) + return (array - np.min(array)) / (1 if diff == 0 else diff) * cap + + +def grayscale(image: np.ndarray) -> np.ndarray: + """ + Uses luminance weights to transform RGB channel to greyscale, by + taking the dot product between the channel and the weights. + + Example: + >>> grayscale(np.array([[[108, 201, 72], [255, 11, 127]], + ... [[56, 56, 56], [128, 255, 107]]])) + array([[158, 97], + [ 56, 200]], dtype=uint8) + """ + return np.dot(image[:, :, 0:3], [0.299, 0.587, 0.114]).astype(np.uint8) + + +def binarize(image: np.ndarray, threshold: float = 127.0) -> np.ndarray: + """ + Binarizes a grayscale image based on a given threshold value, + setting values to 1 or 0 accordingly. + + Examples: + >>> binarize(np.array([[128, 255], [101, 156]])) + array([[1, 1], + [0, 1]]) + >>> binarize(np.array([[0.07, 1], [0.51, 0.3]]), threshold=0.5) + array([[0, 1], + [1, 0]]) + """ + return np.where(image > threshold, 1, 0) + + +def transform(image: np.ndarray, kind: str, kernel: np.ndarray = None) -> np.ndarray: + """ + Simple image transformation using one of two available filter functions: + Erosion and Dilation. + + Args: + image: binarized input image, onto which to apply transformation + kind: Can be either 'erosion', in which case the :func:np.max + function is called, or 'dilation', when :func:np.min is used instead. + kernel: n x n kernel with shape < :attr:image.shape, + to be used when applying convolution to original image + + Returns: + returns a numpy array with same shape as input image, + corresponding to applied binary transformation. + + Examples: + >>> img = np.array([[1, 0.5], [0.2, 0.7]]) + >>> img = binarize(img, threshold=0.5) + >>> transform(img, 'erosion') + array([[1, 1], + [1, 1]], dtype=uint8) + >>> transform(img, 'dilation') + array([[0, 0], + [0, 0]], dtype=uint8) + """ + if kernel is None: + kernel = np.ones((3, 3)) + + if kind == "erosion": + constant = 1 + apply = np.max + else: + constant = 0 + apply = np.min + + center_x, center_y = (x // 2 for x in kernel.shape) + + # Use padded image when applying convolotion + # to not go out of bounds of the original the image + transformed = np.zeros(image.shape, dtype=np.uint8) + padded = np.pad(image, 1, "constant", constant_values=constant) + + for x in range(center_x, padded.shape[0] - center_x): + for y in range(center_y, padded.shape[1] - center_y): + center = padded[ + x - center_x : x + center_x + 1, y - center_y : y + center_y + 1 + ] + # Apply transformation method to the centered section of the image + transformed[x - center_x, y - center_y] = apply(center[kernel == 1]) + + return transformed + + +def opening_filter(image: np.ndarray, kernel: np.ndarray = None) -> np.ndarray: + """ + Opening filter, defined as the sequence of + erosion and then a dilation filter on the same image. + + Examples: + >>> img = np.array([[1, 0.5], [0.2, 0.7]]) + >>> img = binarize(img, threshold=0.5) + >>> opening_filter(img) + array([[1, 1], + [1, 1]], dtype=uint8) + """ + if kernel is None: + np.ones((3, 3)) + + return transform(transform(image, "dilation", kernel), "erosion", kernel) + + +def closing_filter(image: np.ndarray, kernel: np.ndarray = None) -> np.ndarray: + """ + Opening filter, defined as the sequence of + dilation and then erosion filter on the same image. + + Examples: + >>> img = np.array([[1, 0.5], [0.2, 0.7]]) + >>> img = binarize(img, threshold=0.5) + >>> closing_filter(img) + array([[0, 0], + [0, 0]], dtype=uint8) + """ + if kernel is None: + kernel = np.ones((3, 3)) + return transform(transform(image, "erosion", kernel), "dilation", kernel) + + +def binary_mask( + image_gray: np.ndarray, image_map: np.ndarray +) -> tuple[np.ndarray, np.ndarray]: + """ + Apply binary mask, or thresholding based + on bit mask value (mapping mask is binary). + + Returns the mapped true value mask and its complementary false value mask. + + Example: + >>> img = np.array([[[108, 201, 72], [255, 11, 127]], + ... [[56, 56, 56], [128, 255, 107]]]) + >>> gray = grayscale(img) + >>> binary = binarize(gray) + >>> morphological = opening_filter(binary) + >>> binary_mask(gray, morphological) + (array([[1, 1], + [1, 1]], dtype=uint8), array([[158, 97], + [ 56, 200]], dtype=uint8)) + """ + true_mask, false_mask = image_gray.copy(), image_gray.copy() + true_mask[image_map == 1] = 1 + false_mask[image_map == 0] = 0 + + return true_mask, false_mask + + +def matrix_concurrency(image: np.ndarray, coordinate: tuple[int, int]) -> np.ndarray: + """ + Calculate sample co-occurrence matrix based on input image + as well as selected coordinates on image. + + Implementation is made using basic iteration, + as function to be performed (np.max) is non-linear and therefore + not callable on the frequency domain. + + Example: + >>> img = np.array([[[108, 201, 72], [255, 11, 127]], + ... [[56, 56, 56], [128, 255, 107]]]) + >>> gray = grayscale(img) + >>> binary = binarize(gray) + >>> morphological = opening_filter(binary) + >>> mask_1 = binary_mask(gray, morphological)[0] + >>> matrix_concurrency(mask_1, (0, 1)) + array([[0., 0.], + [0., 0.]]) + """ + matrix = np.zeros([np.max(image) + 1, np.max(image) + 1]) + + offset_x, offset_y = coordinate + + for x in range(1, image.shape[0] - 1): + for y in range(1, image.shape[1] - 1): + base_pixel = image[x, y] + offset_pixel = image[x + offset_x, y + offset_y] + + matrix[base_pixel, offset_pixel] += 1 + matrix_sum = np.sum(matrix) + return matrix / (1 if matrix_sum == 0 else matrix_sum) + + +def haralick_descriptors(matrix: np.ndarray) -> list[float]: + """Calculates all 8 Haralick descriptors based on co-occurence input matrix. + All descriptors are as follows: + Maximum probability, Inverse Difference, Homogeneity, Entropy, + Energy, Dissimilarity, Contrast and Correlation + + Args: + matrix: Co-occurence matrix to use as base for calculating descriptors. + + Returns: + Reverse ordered list of resulting descriptors + + Example: + >>> img = np.array([[[108, 201, 72], [255, 11, 127]], + ... [[56, 56, 56], [128, 255, 107]]]) + >>> gray = grayscale(img) + >>> binary = binarize(gray) + >>> morphological = opening_filter(binary) + >>> mask_1 = binary_mask(gray, morphological)[0] + >>> concurrency = matrix_concurrency(mask_1, (0, 1)) + >>> haralick_descriptors(concurrency) + [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] + """ + # Function np.indices could be used for bigger input types, + # but np.ogrid works just fine + i, j = np.ogrid[0 : matrix.shape[0], 0 : matrix.shape[1]] # np.indices() + + # Pre-calculate frequent multiplication and subtraction + prod = np.multiply(i, j) + sub = np.subtract(i, j) + + # Calculate numerical value of Maximum Probability + maximum_prob = np.max(matrix) + # Using the definition for each descriptor individually to calculate its matrix + correlation = prod * matrix + energy = np.power(matrix, 2) + contrast = matrix * np.power(sub, 2) + + dissimilarity = matrix * np.abs(sub) + inverse_difference = matrix / (1 + np.abs(sub)) + homogeneity = matrix / (1 + np.power(sub, 2)) + entropy = -(matrix[matrix > 0] * np.log(matrix[matrix > 0])) + + # Sum values for descriptors ranging from the first one to the last, + # as all are their respective origin matrix and not the resulting value yet. + return [ + maximum_prob, + correlation.sum(), + energy.sum(), + contrast.sum(), + dissimilarity.sum(), + inverse_difference.sum(), + homogeneity.sum(), + entropy.sum(), + ] + + +def get_descriptors( + masks: tuple[np.ndarray, np.ndarray], coordinate: tuple[int, int] +) -> np.ndarray: + """ + Calculate all Haralick descriptors for a sequence of + different co-occurrence matrices, given input masks and coordinates. + + Example: + >>> img = np.array([[[108, 201, 72], [255, 11, 127]], + ... [[56, 56, 56], [128, 255, 107]]]) + >>> gray = grayscale(img) + >>> binary = binarize(gray) + >>> morphological = opening_filter(binary) + >>> get_descriptors(binary_mask(gray, morphological), (0, 1)) + array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) + """ + descriptors = np.array( + [haralick_descriptors(matrix_concurrency(mask, coordinate)) for mask in masks] + ) + + # Concatenate each individual descriptor into + # one single list containing sequence of descriptors + return np.concatenate(descriptors, axis=None) + + +def euclidean(point_1: np.ndarray, point_2: np.ndarray) -> np.float32: + """ + Simple method for calculating the euclidean distance between two points, + with type np.ndarray. + + Example: + >>> a = np.array([1, 0, -2]) + >>> b = np.array([2, -1, 1]) + >>> euclidean(a, b) + 3.3166247903554 + """ + return np.sqrt(np.sum(np.square(point_1 - point_2))) + + +def get_distances(descriptors: np.ndarray, base: int) -> list[tuple[int, float]]: + """ + Calculate all Euclidean distances between a selected base descriptor + and all other Haralick descriptors + The resulting comparison is return in decreasing order, + showing which descriptor is the most similar to the selected base. + + Args: + descriptors: Haralick descriptors to compare with base index + base: Haralick descriptor index to use as base when calculating respective + euclidean distance to other descriptors. + + Returns: + Ordered distances between descriptors + + Example: + >>> index = 1 + >>> img = np.array([[[108, 201, 72], [255, 11, 127]], + ... [[56, 56, 56], [128, 255, 107]]]) + >>> gray = grayscale(img) + >>> binary = binarize(gray) + >>> morphological = opening_filter(binary) + >>> get_distances(get_descriptors( + ... binary_mask(gray, morphological), (0, 1)), + ... index) + [(0, 0.0), (1, 0.0), (2, 0.0), (3, 0.0), (4, 0.0), (5, 0.0), \ +(6, 0.0), (7, 0.0), (8, 0.0), (9, 0.0), (10, 0.0), (11, 0.0), (12, 0.0), \ +(13, 0.0), (14, 0.0), (15, 0.0)] + """ + distances = np.array( + [euclidean(descriptor, descriptors[base]) for descriptor in descriptors] + ) + # Normalize distances between range [0, 1] + normalized_distances: list[float] = normalize_array(distances, 1).tolist() + enum_distances = list(enumerate(normalized_distances)) + enum_distances.sort(key=lambda tup: tup[1], reverse=True) + return enum_distances + + +if __name__ == "__main__": + # Index to compare haralick descriptors to + index = int(input()) + q_value_list = [int(value) for value in input().split()] + q_value = (q_value_list[0], q_value_list[1]) + + # Format is the respective filter to apply, + # can be either 1 for the opening filter or else for the closing + parameters = {"format": int(input()), "threshold": int(input())} + + # Number of images to perform methods on + b_number = int(input()) + + files, descriptors = [], [] + + for _ in range(b_number): + file = input().rstrip() + files.append(file) + + # Open given image and calculate morphological filter, + # respective masks and correspondent Harralick Descriptors. + image = imageio.imread(file).astype(np.float32) + gray = grayscale(image) + threshold = binarize(gray, parameters["threshold"]) + + morphological = ( + opening_filter(threshold) + if parameters["format"] == 1 + else closing_filter(threshold) + ) + masks = binary_mask(gray, morphological) + descriptors.append(get_descriptors(masks, q_value)) + + # Transform ordered distances array into a sequence of indexes + # corresponding to original file position + distances = get_distances(np.array(descriptors), index) + indexed_distances = np.array(distances).astype(np.uint8)[:, 0] + + # Finally, print distances considering the Haralick descriptions from the base + # file to all other images using the morphology method of choice. + print(f"Query: {files[index]}") + print("Ranking:") + for idx, file_idx in enumerate(indexed_distances): + print(f"({idx}) {files[file_idx]}", end="\n") diff --git a/requirements.txt b/requirements.txt index 2702523d5..1128e9d66 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,6 @@ beautifulsoup4 fake_useragent +imageio keras lxml matplotlib