Reduce the complexity of sorts/merge_insertion_sort.py (#7954)

* Reduce the complexity of sorts/merge_insertion_sort.py

* Add tests

* Lower the --max-complexity threshold in the file .flake8
This commit is contained in:
Maxim Smolskiy 2022-12-24 17:57:28 +03:00 committed by GitHub
parent d4c5b22424
commit 79ef431cec
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 48 additions and 33 deletions

View File

@ -1,7 +1,7 @@
[flake8] [flake8]
max-line-length = 88 max-line-length = 88
# max-complexity should be 10 # max-complexity should be 10
max-complexity = 19 max-complexity = 17
extend-ignore = extend-ignore =
# Formatting style for `black` # Formatting style for `black`
# E203 is whitespace before ':' # E203 is whitespace before ':'

View File

@ -14,6 +14,53 @@ python3 merge_insertion_sort.py
from __future__ import annotations from __future__ import annotations
def binary_search_insertion(sorted_list, item):
"""
>>> binary_search_insertion([1, 2, 7, 9, 10], 4)
[1, 2, 4, 7, 9, 10]
"""
left = 0
right = len(sorted_list) - 1
while left <= right:
middle = (left + right) // 2
if left == right:
if sorted_list[middle] < item:
left = middle + 1
break
elif sorted_list[middle] < item:
left = middle + 1
else:
right = middle - 1
sorted_list.insert(left, item)
return sorted_list
def merge(left, right):
"""
>>> merge([[1, 6], [9, 10]], [[2, 3], [4, 5], [7, 8]])
[[1, 6], [2, 3], [4, 5], [7, 8], [9, 10]]
"""
result = []
while left and right:
if left[0][0] < right[0][0]:
result.append(left.pop(0))
else:
result.append(right.pop(0))
return result + left + right
def sortlist_2d(list_2d):
"""
>>> sortlist_2d([[9, 10], [1, 6], [7, 8], [2, 3], [4, 5]])
[[1, 6], [2, 3], [4, 5], [7, 8], [9, 10]]
"""
length = len(list_2d)
if length <= 1:
return list_2d
middle = length // 2
return merge(sortlist_2d(list_2d[:middle]), sortlist_2d(list_2d[middle:]))
def merge_insertion_sort(collection: list[int]) -> list[int]: def merge_insertion_sort(collection: list[int]) -> list[int]:
"""Pure implementation of merge-insertion sort algorithm in Python """Pure implementation of merge-insertion sort algorithm in Python
@ -38,38 +85,6 @@ def merge_insertion_sort(collection: list[int]) -> list[int]:
True True
""" """
def binary_search_insertion(sorted_list, item):
left = 0
right = len(sorted_list) - 1
while left <= right:
middle = (left + right) // 2
if left == right:
if sorted_list[middle] < item:
left = middle + 1
break
elif sorted_list[middle] < item:
left = middle + 1
else:
right = middle - 1
sorted_list.insert(left, item)
return sorted_list
def sortlist_2d(list_2d):
def merge(left, right):
result = []
while left and right:
if left[0][0] < right[0][0]:
result.append(left.pop(0))
else:
result.append(right.pop(0))
return result + left + right
length = len(list_2d)
if length <= 1:
return list_2d
middle = length // 2
return merge(sortlist_2d(list_2d[:middle]), sortlist_2d(list_2d[middle:]))
if len(collection) <= 1: if len(collection) <= 1:
return collection return collection