Merge pull request #211 from christianbender/master

primelib
This commit is contained in:
Harshil 2017-11-28 17:06:57 +05:30 committed by GitHub
commit 7bb26e9b2a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 652 additions and 11 deletions

View File

@ -5,8 +5,8 @@ we get 3,5,6 and 9. The sum of these multiples is 23.
Find the sum of all the multiples of 3 or 5 below N.
'''
n = int(raw_input().strip())
sum=0;
sum=0
for a in range(3,n):
if(a%3==0 or a%5==0):
sum+=a
print sum;
print sum

View File

@ -8,8 +8,8 @@ Find the sum of all the multiples of 3 or 5 below N.
This solution is based on the pattern that the successive numbers in the series follow: 0+3,+2,+1,+3,+1,+2,+3.
'''
n = int(raw_input().strip())
sum=0;
num=0;
sum=0
num=0
while(1):
num+=3
if(num>=n):
@ -39,4 +39,4 @@ while(1):
if(num>=n):
break
sum+=num
print sum;
print sum

View File

@ -8,11 +8,13 @@ e.g. for n=10, we have {2,8}, sum is 10.
'''
n = int(raw_input().strip())
i=1; j=2; sum=0
i=1
j=2
sum=0
while(j<=n):
if((j&1)==0): #can also use (j%2==0)
sum+=j
temp=i
i=j
j=temp+i
print sum
print sum

View File

@ -17,7 +17,7 @@ def isprime(no):
return False
return True
max=0
maxNumber = 0
n=int(input())
if(isprime(n)):
print n
@ -31,8 +31,8 @@ else:
for i in range(3,n1,2):
if(n%i==0):
if(isprime(n/i)):
max=n/i
maxNumber = n/i
break
elif(isprime(i)):
max=i
print max
maxNumber = i
print maxNumber

View File

@ -0,0 +1,34 @@
def main():
"""
Consider all integer combinations of ab for 2 <= a <= 5 and 2 <= b <= 5:
22=4, 23=8, 24=16, 25=32
32=9, 33=27, 34=81, 35=243
42=16, 43=64, 44=256, 45=1024
52=25, 53=125, 54=625, 55=3125
If they are then placed in numerical order, with any repeats removed, we get the following sequence of 15 distinct terms:
4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125
How many distinct terms are in the sequence generated by ab for 2 <= a <= 100 and 2 <= b <= 100?
"""
collectPowers = set()
currentPow = 0
N = 101 # maximum limit
for a in range(2,N):
for b in range (2,N):
currentPow = a**b # calculates the current power
collectPowers.add(currentPow) # adds the result to the set
print "Number of terms ", len(collectPowers)
if __name__ == '__main__':
main()

605
other/primelib.py Normal file
View File

@ -0,0 +1,605 @@
# -*- coding: utf-8 -*-
"""
Created on Thu Oct 5 16:44:23 2017
@author: Christian Bender
This python library contains some useful functions to deal with
prime numbers and whole numbers.
Overview:
isPrime(number)
sieveEr(N)
getPrimeNumbers(N)
primeFactorization(number)
greatestPrimeFactor(number)
smallestPrimeFactor(number)
getPrime(n)
getPrimesBetween(pNumber1, pNumber2)
----
isEven(number)
isOdd(number)
gcd(number1, number2) // greatest common divisor
kgV(number1, number2) // least common multiple
getDivisors(number) // all divisors of 'number' inclusive 1, number
isPerfectNumber(number)
NEW-FUNCTIONS
simplifyFraction(numerator, denominator)
factorial (n) // n!
fib (n) // calculate the n-th fibonacci term.
-----
goldbach(number) // Goldbach's assumption
"""
def isPrime(number):
"""
input: positive integer 'number'
returns true if 'number' is prime otherwise false.
"""
import math # for function sqrt
# precondition
assert isinstance(number,int) and (number >= 0) , \
"'number' must been an int and positive"
status = True
# 0 and 1 are none primes.
if number <= 1:
status = False
for divisor in range(2,int(round(math.sqrt(number)))+1):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
status = False
break
# precondition
assert isinstance(status,bool), "'status' must been from type bool"
return status
# ------------------------------------------
def sieveEr(N):
"""
input: positive integer 'N' > 2
returns a list of prime numbers from 2 up to N.
This function implements the algorithm called
sieve of erathostenes.
"""
# precondition
assert isinstance(N,int) and (N > 2), "'N' must been an int and > 2"
# beginList: conatins all natural numbers from 2 upt to N
beginList = [x for x in range(2,N+1)]
ans = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(beginList)):
for j in range(i+1,len(beginList)):
if (beginList[i] != 0) and \
(beginList[j] % beginList[i] == 0):
beginList[j] = 0
# filters actual prime numbers.
ans = [x for x in beginList if x != 0]
# precondition
assert isinstance(ans,list), "'ans' must been from type list"
return ans
# --------------------------------
def getPrimeNumbers(N):
"""
input: positive integer 'N' > 2
returns a list of prime numbers from 2 up to N (inclusive)
This function is more efficient as function 'sieveEr(...)'
"""
# precondition
assert isinstance(N,int) and (N > 2), "'N' must been an int and > 2"
ans = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2,N+1):
if isPrime(number):
ans.append(number)
# precondition
assert isinstance(ans,list), "'ans' must been from type list"
return ans
# -----------------------------------------
def primeFactorization(number):
"""
input: positive integer 'number'
returns a list of the prime number factors of 'number'
"""
import math # for function sqrt
# precondition
assert isinstance(number,int) and number >= 0, \
"'number' must been an int and >= 0"
ans = [] # this list will be returns of the function.
# potential prime number factors.
factor = 2
quotient = number
if number == 0 or number == 1:
ans.append(number)
# if 'number' not prime then builds the prime factorization of 'number'
elif not isPrime(number):
while (quotient != 1):
if isPrime(factor) and (quotient % factor == 0):
ans.append(factor)
quotient /= factor
else:
factor += 1
else:
ans.append(number)
# precondition
assert isinstance(ans,list), "'ans' must been from type list"
return ans
# -----------------------------------------
def greatestPrimeFactor(number):
"""
input: positive integer 'number' >= 0
returns the greatest prime number factor of 'number'
"""
# precondition
assert isinstance(number,int) and (number >= 0), \
"'number' bust been an int and >= 0"
ans = 0
# prime factorization of 'number'
primeFactors = primeFactorization(number)
ans = max(primeFactors)
# precondition
assert isinstance(ans,int), "'ans' must been from type int"
return ans
# ----------------------------------------------
def smallestPrimeFactor(number):
"""
input: integer 'number' >= 0
returns the smallest prime number factor of 'number'
"""
# precondition
assert isinstance(number,int) and (number >= 0), \
"'number' bust been an int and >= 0"
ans = 0
# prime factorization of 'number'
primeFactors = primeFactorization(number)
ans = min(primeFactors)
# precondition
assert isinstance(ans,int), "'ans' must been from type int"
return ans
# ----------------------
def isEven(number):
"""
input: integer 'number'
returns true if 'number' is even, otherwise false.
"""
# precondition
assert isinstance(number, int), "'number' must been an int"
assert isinstance(number % 2 == 0, bool), "compare bust been from type bool"
return number % 2 == 0
# ------------------------
def isOdd(number):
"""
input: integer 'number'
returns true if 'number' is odd, otherwise false.
"""
# precondition
assert isinstance(number, int), "'number' must been an int"
assert isinstance(number % 2 != 0, bool), "compare bust been from type bool"
return number % 2 != 0
# ------------------------
def goldbach(number):
"""
Goldbach's assumption
input: a even positive integer 'number' > 2
returns a list of two prime numbers whose sum is equal to 'number'
"""
# precondition
assert isinstance(number,int) and (number > 2) and isEven(number), \
"'number' must been an int, even and > 2"
ans = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
primeNumbers = getPrimeNumbers(number)
lenPN = len(primeNumbers)
# run variable for while-loops.
i = 0
j = 1
# exit variable. for break up the loops
loop = True
while (i < lenPN and loop):
j = i+1;
while (j < lenPN and loop):
if primeNumbers[i] + primeNumbers[j] == number:
loop = False
ans.append(primeNumbers[i])
ans.append(primeNumbers[j])
j += 1;
i += 1
# precondition
assert isinstance(ans,list) and (len(ans) == 2) and \
(ans[0] + ans[1] == number) and isPrime(ans[0]) and isPrime(ans[1]), \
"'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
# ----------------------------------------------
def gcd(number1,number2):
"""
Greatest common divisor
input: two positive integer 'number1' and 'number2'
returns the greatest common divisor of 'number1' and 'number2'
"""
# precondition
assert isinstance(number1,int) and isinstance(number2,int) \
and (number1 >= 0) and (number2 >= 0), \
"'number1' and 'number2' must been positive integer."
rest = 0
while number2 != 0:
rest = number1 % number2
number1 = number2
number2 = rest
# precondition
assert isinstance(number1,int) and (number1 >= 0), \
"'number' must been from type int and positive"
return number1
# ----------------------------------------------------
def kgV(number1, number2):
"""
Least common multiple
input: two positive integer 'number1' and 'number2'
returns the least common multiple of 'number1' and 'number2'
"""
# precondition
assert isinstance(number1,int) and isinstance(number2,int) \
and (number1 >= 1) and (number2 >= 1), \
"'number1' and 'number2' must been positive integer."
ans = 1 # actual answer that will be return.
# for kgV (x,1)
if number1 > 1 and number2 > 1:
# builds the prime factorization of 'number1' and 'number2'
primeFac1 = primeFactorization(number1)
primeFac2 = primeFactorization(number2)
elif number1 == 1 or number2 == 1:
primeFac1 = []
primeFac2 = []
ans = max(number1,number2)
count1 = 0
count2 = 0
done = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in primeFac1:
if n not in done:
if n in primeFac2:
count1 = primeFac1.count(n)
count2 = primeFac2.count(n)
for i in range(max(count1,count2)):
ans *= n
else:
count1 = primeFac1.count(n)
for i in range(count1):
ans *= n
done.append(n)
# iterates through primeFac2
for n in primeFac2:
if n not in done:
count2 = primeFac2.count(n)
for i in range(count2):
ans *= n
done.append(n)
# precondition
assert isinstance(ans,int) and (ans >= 0), \
"'ans' must been from type int and positive"
return ans
# ----------------------------------
def getPrime(n):
"""
Gets the n-th prime number.
input: positive integer 'n' >= 0
returns the n-th prime number, beginning at index 0
"""
# precondition
assert isinstance(n,int) and (n >= 0), "'number' must been a positive int"
index = 0
ans = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not isPrime(ans):
ans += 1
# precondition
assert isinstance(ans,int) and isPrime(ans), \
"'ans' must been a prime number and from type int"
return ans
# ---------------------------------------------------
def getPrimesBetween(pNumber1, pNumber2):
"""
input: prime numbers 'pNumber1' and 'pNumber2'
pNumber1 < pNumber2
returns a list of all prime numbers between 'pNumber1' (exclusiv)
and 'pNumber2' (exclusiv)
"""
# precondition
assert isPrime(pNumber1) and isPrime(pNumber2) and (pNumber1 < pNumber2), \
"The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
number = pNumber1 + 1 # jump to the next number
ans = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not isPrime(number):
number += 1
while number < pNumber2:
ans.append(number)
number += 1
# fetch the next prime number.
while not isPrime(number):
number += 1
# precondition
assert isinstance(ans,list) and ans[0] != pNumber1 \
and ans[len(ans)-1] != pNumber2, \
"'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
# ----------------------------------------------------
def getDivisors(n):
"""
input: positive integer 'n' >= 1
returns all divisors of n (inclusive 1 and 'n')
"""
# precondition
assert isinstance(n,int) and (n >= 1), "'n' must been int and >= 1"
from math import sqrt
ans = [] # will be returned.
for divisor in range(1,n+1):
if n % divisor == 0:
ans.append(divisor)
#precondition
assert ans[0] == 1 and ans[len(ans)-1] == n, \
"Error in function getDivisiors(...)"
return ans
# ----------------------------------------------------
def isPerfectNumber(number):
"""
input: positive integer 'number' > 1
returns true if 'number' is a perfect number otherwise false.
"""
# precondition
assert isinstance(number,int) and (number > 1), \
"'number' must been an int and >= 1"
divisors = getDivisors(number)
# precondition
assert isinstance(divisors,list) and(divisors[0] == 1) and \
(divisors[len(divisors)-1] == number), \
"Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1]) == number
# ------------------------------------------------------------
def simplifyFraction(numerator, denominator):
"""
input: two integer 'numerator' and 'denominator'
assumes: 'denominator' != 0
returns: a tuple with simplify numerator and denominator.
"""
# precondition
assert isinstance(numerator, int) and isinstance(denominator,int) \
and (denominator != 0), \
"The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
gcdOfFraction = gcd(abs(numerator), abs(denominator))
# precondition
assert isinstance(gcdOfFraction, int) and (numerator % gcdOfFraction == 0) \
and (denominator % gcdOfFraction == 0), \
"Error in function gcd(...,...)"
return (numerator // gcdOfFraction, denominator // gcdOfFraction)
# -----------------------------------------------------------------
def factorial(n):
"""
input: positive integer 'n'
returns the factorial of 'n' (n!)
"""
# precondition
assert isinstance(n,int) and (n >= 0), "'n' must been a int and >= 0"
ans = 1 # this will be return.
for factor in range(1,n+1):
ans *= factor
return ans
# -------------------------------------------------------------------
def fib(n):
"""
input: positive integer 'n'
returns the n-th fibonacci term , indexing by 0
"""
# precondition
assert isinstance(n, int) and (n >= 0), "'n' must been an int and >= 0"
tmp = 0
fib1 = 1
ans = 1 # this will be return
for i in range(n-1):
tmp = ans
ans += fib1
fib1 = tmp
return ans