mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 16:27:02 +00:00
Implement ruling hash to appropriate complexity of Rabin Karp (#1066)
* Added matrix exponentiation approach for finding fibonacci number. * Implemented the way of finding nth fibonacci. * Complexity is about O(log(n)*8) * Updated the matrix exponentiation approach of finding nth fibonacci. - Removed some extra spaces - Added the complexity of bruteforce algorithm - Removed unused function called zerro() - Added some docktest based on request * Updated the matrix exponentiation approach of finding nth fibonacci. - Removed some extra spaces - Added the complexity of bruteforce algorithm - Removed unused function called zerro() - Added some docktest based on request * Updated Rabin Karp algorithm. - Previous solution is based on the hash function of python. - Implemented ruling hash to get the appropriate complexity of rabin karp. * Updated Rabin Karp algorithm. - Previous solution is based on the hash function of python. - Implemented ruling hash to get the appropriate complexity of rabin karp. * Implemented ruling hash to appropriate complexity of Rabin Karp Added unit pattern testing
This commit is contained in:
parent
b2ed8d443c
commit
7c3ef98853
|
@ -1,6 +1,11 @@
|
|||
# Numbers of alphabet which we call base
|
||||
alphabet_size = 256
|
||||
# Modulus to hash a string
|
||||
modulus = 1000003
|
||||
|
||||
|
||||
def rabin_karp(pattern, text):
|
||||
"""
|
||||
|
||||
The Rabin-Karp Algorithm for finding a pattern within a piece of text
|
||||
with complexity O(nm), most efficient when it is used with multiple patterns
|
||||
as it is able to check if any of a set of patterns match a section of text in o(1) given the precomputed hashes.
|
||||
|
@ -12,22 +17,42 @@ def rabin_karp(pattern, text):
|
|||
2) Step through the text one character at a time passing a window with the same length as the pattern
|
||||
calculating the hash of the text within the window compare it with the hash of the pattern. Only testing
|
||||
equality if the hashes match
|
||||
|
||||
"""
|
||||
p_len = len(pattern)
|
||||
p_hash = hash(pattern)
|
||||
t_len = len(text)
|
||||
if p_len > t_len:
|
||||
return False
|
||||
|
||||
for i in range(0, len(text) - (p_len - 1)):
|
||||
p_hash = 0
|
||||
text_hash = 0
|
||||
modulus_power = 1
|
||||
|
||||
# written like this t
|
||||
text_hash = hash(text[i:i + p_len])
|
||||
if text_hash == p_hash and \
|
||||
text[i:i + p_len] == pattern:
|
||||
# Calculating the hash of pattern and substring of text
|
||||
for i in range(p_len):
|
||||
p_hash = (ord(pattern[i]) + p_hash * alphabet_size) % modulus
|
||||
text_hash = (ord(text[i]) + text_hash * alphabet_size) % modulus
|
||||
if i == p_len - 1:
|
||||
continue
|
||||
modulus_power = (modulus_power * alphabet_size) % modulus
|
||||
|
||||
for i in range(0, t_len - p_len + 1):
|
||||
if text_hash == p_hash and text[i : i + p_len] == pattern:
|
||||
return True
|
||||
if i == t_len - p_len:
|
||||
continue
|
||||
# Calculating the ruling hash
|
||||
text_hash = (
|
||||
(text_hash - ord(text[i]) * modulus_power) * alphabet_size
|
||||
+ ord(text[i + p_len])
|
||||
) % modulus
|
||||
return False
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
def test_rabin_karp():
|
||||
"""
|
||||
>>> test_rabin_karp()
|
||||
Success.
|
||||
"""
|
||||
# Test 1)
|
||||
pattern = "abc1abc12"
|
||||
text1 = "alskfjaldsabc1abc1abc12k23adsfabcabc"
|
||||
|
@ -48,3 +73,8 @@ if __name__ == '__main__':
|
|||
pattern = "abcdabcy"
|
||||
text = "abcxabcdabxabcdabcdabcy"
|
||||
assert rabin_karp(pattern, text)
|
||||
print("Success.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_rabin_karp()
|
||||
|
|
Loading…
Reference in New Issue
Block a user