mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 15:01:08 +00:00
Travis CI: Add pytest --doctest-modules graphs (#1018)
This commit is contained in:
parent
267b5eff40
commit
7cdda931fd
|
@ -21,6 +21,7 @@ script:
|
|||
digital_image_processing
|
||||
divide_and_conquer
|
||||
dynamic_programming
|
||||
graphs
|
||||
hashes
|
||||
linear_algebra_python
|
||||
matrix
|
||||
|
|
|
@ -10,42 +10,44 @@ try:
|
|||
except NameError:
|
||||
xrange = range # Python 3
|
||||
|
||||
# Accept No. of Nodes and edges
|
||||
n, m = map(int, raw_input().split(" "))
|
||||
|
||||
# Initialising Dictionary of edges
|
||||
g = {}
|
||||
for i in xrange(n):
|
||||
g[i + 1] = []
|
||||
if __name__ == "__main__":
|
||||
# Accept No. of Nodes and edges
|
||||
n, m = map(int, raw_input().split(" "))
|
||||
|
||||
"""
|
||||
--------------------------------------------------------------------------------
|
||||
Accepting edges of Unweighted Directed Graphs
|
||||
--------------------------------------------------------------------------------
|
||||
"""
|
||||
for _ in xrange(m):
|
||||
x, y = map(int, raw_input().split(" "))
|
||||
g[x].append(y)
|
||||
# Initialising Dictionary of edges
|
||||
g = {}
|
||||
for i in xrange(n):
|
||||
g[i + 1] = []
|
||||
|
||||
"""
|
||||
--------------------------------------------------------------------------------
|
||||
Accepting edges of Unweighted Undirected Graphs
|
||||
--------------------------------------------------------------------------------
|
||||
"""
|
||||
for _ in xrange(m):
|
||||
x, y = map(int, raw_input().split(" "))
|
||||
g[x].append(y)
|
||||
g[y].append(x)
|
||||
"""
|
||||
----------------------------------------------------------------------------
|
||||
Accepting edges of Unweighted Directed Graphs
|
||||
----------------------------------------------------------------------------
|
||||
"""
|
||||
for _ in xrange(m):
|
||||
x, y = map(int, raw_input().strip().split(" "))
|
||||
g[x].append(y)
|
||||
|
||||
"""
|
||||
--------------------------------------------------------------------------------
|
||||
Accepting edges of Weighted Undirected Graphs
|
||||
--------------------------------------------------------------------------------
|
||||
"""
|
||||
for _ in xrange(m):
|
||||
x, y, r = map(int, raw_input().split(" "))
|
||||
g[x].append([y, r])
|
||||
g[y].append([x, r])
|
||||
"""
|
||||
----------------------------------------------------------------------------
|
||||
Accepting edges of Unweighted Undirected Graphs
|
||||
----------------------------------------------------------------------------
|
||||
"""
|
||||
for _ in xrange(m):
|
||||
x, y = map(int, raw_input().strip().split(" "))
|
||||
g[x].append(y)
|
||||
g[y].append(x)
|
||||
|
||||
"""
|
||||
----------------------------------------------------------------------------
|
||||
Accepting edges of Weighted Undirected Graphs
|
||||
----------------------------------------------------------------------------
|
||||
"""
|
||||
for _ in xrange(m):
|
||||
x, y, r = map(int, raw_input().strip().split(" "))
|
||||
g[x].append([y, r])
|
||||
g[y].append([x, r])
|
||||
|
||||
"""
|
||||
--------------------------------------------------------------------------------
|
||||
|
@ -168,9 +170,10 @@ def topo(G, ind=None, Q=[1]):
|
|||
|
||||
|
||||
def adjm():
|
||||
n, a = raw_input(), []
|
||||
n = raw_input().strip()
|
||||
a = []
|
||||
for i in xrange(n):
|
||||
a.append(map(int, raw_input().split()))
|
||||
a.append(map(int, raw_input().strip().split()))
|
||||
return a, n
|
||||
|
||||
|
||||
|
|
|
@ -12,7 +12,7 @@ def printDist(dist, V):
|
|||
def BellmanFord(graph, V, E, src):
|
||||
mdist=[float('inf') for i in range(V)]
|
||||
mdist[src] = 0.0
|
||||
|
||||
|
||||
for i in range(V-1):
|
||||
for j in range(V):
|
||||
u = graph[j]["src"]
|
||||
|
@ -20,7 +20,7 @@ def BellmanFord(graph, V, E, src):
|
|||
w = graph[j]["weight"]
|
||||
|
||||
if mdist[u] != float('inf') and mdist[u] + w < mdist[v]:
|
||||
mdist[v] = mdist[u] + w
|
||||
mdist[v] = mdist[u] + w
|
||||
for j in range(V):
|
||||
u = graph[j]["src"]
|
||||
v = graph[j]["dst"]
|
||||
|
@ -29,26 +29,26 @@ def BellmanFord(graph, V, E, src):
|
|||
if mdist[u] != float('inf') and mdist[u] + w < mdist[v]:
|
||||
print("Negative cycle found. Solution not possible.")
|
||||
return
|
||||
|
||||
printDist(mdist, V)
|
||||
|
||||
|
||||
printDist(mdist, V)
|
||||
|
||||
#MAIN
|
||||
V = int(input("Enter number of vertices: "))
|
||||
E = int(input("Enter number of edges: "))
|
||||
|
||||
graph = [dict() for j in range(E)]
|
||||
|
||||
for i in range(V):
|
||||
graph[i][i] = 0.0
|
||||
if __name__ == "__main__":
|
||||
V = int(input("Enter number of vertices: ").strip())
|
||||
E = int(input("Enter number of edges: ").strip())
|
||||
|
||||
for i in range(E):
|
||||
print("\nEdge ",i+1)
|
||||
src = int(input("Enter source:"))
|
||||
dst = int(input("Enter destination:"))
|
||||
weight = float(input("Enter weight:"))
|
||||
graph[i] = {"src": src,"dst": dst, "weight": weight}
|
||||
|
||||
gsrc = int(input("\nEnter shortest path source:"))
|
||||
BellmanFord(graph, V, E, gsrc)
|
||||
graph = [dict() for j in range(E)]
|
||||
|
||||
for i in range(V):
|
||||
graph[i][i] = 0.0
|
||||
|
||||
for i in range(E):
|
||||
print("\nEdge ",i+1)
|
||||
src = int(input("Enter source:").strip())
|
||||
dst = int(input("Enter destination:").strip())
|
||||
weight = float(input("Enter weight:").strip())
|
||||
graph[i] = {"src": src,"dst": dst, "weight": weight}
|
||||
|
||||
gsrc = int(input("\nEnter shortest path source:").strip())
|
||||
BellmanFord(graph, V, E, gsrc)
|
||||
|
|
|
@ -22,36 +22,36 @@ def Dijkstra(graph, V, src):
|
|||
mdist=[float('inf') for i in range(V)]
|
||||
vset = [False for i in range(V)]
|
||||
mdist[src] = 0.0
|
||||
|
||||
|
||||
for i in range(V-1):
|
||||
u = minDist(mdist, vset, V)
|
||||
vset[u] = True
|
||||
|
||||
|
||||
for v in range(V):
|
||||
if (not vset[v]) and graph[u][v]!=float('inf') and mdist[u] + graph[u][v] < mdist[v]:
|
||||
mdist[v] = mdist[u] + graph[u][v]
|
||||
mdist[v] = mdist[u] + graph[u][v]
|
||||
|
||||
|
||||
|
||||
printDist(mdist, V)
|
||||
|
||||
|
||||
printDist(mdist, V)
|
||||
|
||||
#MAIN
|
||||
V = int(input("Enter number of vertices: "))
|
||||
E = int(input("Enter number of edges: "))
|
||||
|
||||
graph = [[float('inf') for i in range(V)] for j in range(V)]
|
||||
|
||||
for i in range(V):
|
||||
graph[i][i] = 0.0
|
||||
if __name__ == "__main__":
|
||||
V = int(input("Enter number of vertices: ").strip())
|
||||
E = int(input("Enter number of edges: ").strip())
|
||||
|
||||
for i in range(E):
|
||||
print("\nEdge ",i+1)
|
||||
src = int(input("Enter source:"))
|
||||
dst = int(input("Enter destination:"))
|
||||
weight = float(input("Enter weight:"))
|
||||
graph[src][dst] = weight
|
||||
graph = [[float('inf') for i in range(V)] for j in range(V)]
|
||||
|
||||
gsrc = int(input("\nEnter shortest path source:"))
|
||||
Dijkstra(graph, V, gsrc)
|
||||
for i in range(V):
|
||||
graph[i][i] = 0.0
|
||||
|
||||
for i in range(E):
|
||||
print("\nEdge ",i+1)
|
||||
src = int(input("Enter source:").strip())
|
||||
dst = int(input("Enter destination:").strip())
|
||||
weight = float(input("Enter weight:").strip())
|
||||
graph[src][dst] = weight
|
||||
|
||||
gsrc = int(input("\nEnter shortest path source:").strip())
|
||||
Dijkstra(graph, V, gsrc)
|
||||
|
|
|
@ -1,32 +1,34 @@
|
|||
from __future__ import print_function
|
||||
num_nodes, num_edges = list(map(int,input().split()))
|
||||
|
||||
edges = []
|
||||
if __name__ == "__main__":
|
||||
num_nodes, num_edges = list(map(int, input().strip().split()))
|
||||
|
||||
for i in range(num_edges):
|
||||
node1, node2, cost = list(map(int,input().split()))
|
||||
edges.append((i,node1,node2,cost))
|
||||
edges = []
|
||||
|
||||
edges = sorted(edges, key=lambda edge: edge[3])
|
||||
for i in range(num_edges):
|
||||
node1, node2, cost = list(map(int, input().strip().split()))
|
||||
edges.append((i,node1,node2,cost))
|
||||
|
||||
parent = [i for i in range(num_nodes)]
|
||||
edges = sorted(edges, key=lambda edge: edge[3])
|
||||
|
||||
def find_parent(i):
|
||||
if(i != parent[i]):
|
||||
parent[i] = find_parent(parent[i])
|
||||
return parent[i]
|
||||
parent = list(range(num_nodes))
|
||||
|
||||
minimum_spanning_tree_cost = 0
|
||||
minimum_spanning_tree = []
|
||||
def find_parent(i):
|
||||
if i != parent[i]:
|
||||
parent[i] = find_parent(parent[i])
|
||||
return parent[i]
|
||||
|
||||
for edge in edges:
|
||||
parent_a = find_parent(edge[1])
|
||||
parent_b = find_parent(edge[2])
|
||||
if(parent_a != parent_b):
|
||||
minimum_spanning_tree_cost += edge[3]
|
||||
minimum_spanning_tree.append(edge)
|
||||
parent[parent_a] = parent_b
|
||||
minimum_spanning_tree_cost = 0
|
||||
minimum_spanning_tree = []
|
||||
|
||||
print(minimum_spanning_tree_cost)
|
||||
for edge in minimum_spanning_tree:
|
||||
print(edge)
|
||||
for edge in edges:
|
||||
parent_a = find_parent(edge[1])
|
||||
parent_b = find_parent(edge[2])
|
||||
if parent_a != parent_b:
|
||||
minimum_spanning_tree_cost += edge[3]
|
||||
minimum_spanning_tree.append(edge)
|
||||
parent[parent_a] = parent_b
|
||||
|
||||
print(minimum_spanning_tree_cost)
|
||||
for edge in minimum_spanning_tree:
|
||||
print(edge)
|
||||
|
|
|
@ -100,12 +100,13 @@ def PrimsAlgorithm(l):
|
|||
Nbr_TV[ v[0] ] = vertex
|
||||
return TreeEdges
|
||||
|
||||
# < --------- Prims Algorithm --------- >
|
||||
n = int(input("Enter number of vertices: "))
|
||||
e = int(input("Enter number of edges: "))
|
||||
adjlist = defaultdict(list)
|
||||
for x in range(e):
|
||||
l = [int(x) for x in input().split()]
|
||||
adjlist[l[0]].append([ l[1], l[2] ])
|
||||
adjlist[l[1]].append([ l[0], l[2] ])
|
||||
print(PrimsAlgorithm(adjlist))
|
||||
if __name__ == "__main__":
|
||||
# < --------- Prims Algorithm --------- >
|
||||
n = int(input("Enter number of vertices: ").strip())
|
||||
e = int(input("Enter number of edges: ").strip())
|
||||
adjlist = defaultdict(list)
|
||||
for x in range(e):
|
||||
l = [int(x) for x in input().strip().split()]
|
||||
adjlist[l[0]].append([ l[1], l[2] ])
|
||||
adjlist[l[1]].append([ l[0], l[2] ])
|
||||
print(PrimsAlgorithm(adjlist))
|
||||
|
|
|
@ -18,7 +18,7 @@ class PriorityQueue:
|
|||
return self.elements[0][0]
|
||||
else:
|
||||
return float('inf')
|
||||
|
||||
|
||||
def empty(self):
|
||||
return len(self.elements) == 0
|
||||
|
||||
|
@ -48,10 +48,10 @@ class PriorityQueue:
|
|||
(pro, x) = heapq.heappop(self.elements)
|
||||
for (prito, yyy) in temp:
|
||||
heapq.heappush(self.elements, (prito, yyy))
|
||||
|
||||
|
||||
def top_show(self):
|
||||
return self.elements[0][1]
|
||||
|
||||
|
||||
def get(self):
|
||||
(priority, item) = heapq.heappop(self.elements)
|
||||
self.set.remove(item)
|
||||
|
@ -65,7 +65,7 @@ def consistent_hueristic(P, goal):
|
|||
|
||||
def hueristic_2(P, goal):
|
||||
# integer division by time variable
|
||||
return consistent_hueristic(P, goal) // t
|
||||
return consistent_hueristic(P, goal) // t
|
||||
|
||||
def hueristic_1(P, goal):
|
||||
# manhattan distance
|
||||
|
@ -74,13 +74,13 @@ def hueristic_1(P, goal):
|
|||
def key(start, i, goal, g_function):
|
||||
ans = g_function[start] + W1 * hueristics[i](start, goal)
|
||||
return ans
|
||||
|
||||
|
||||
def do_something(back_pointer, goal, start):
|
||||
grid = np.chararray((n, n))
|
||||
for i in range(n):
|
||||
for j in range(n):
|
||||
grid[i][j] = '*'
|
||||
|
||||
|
||||
for i in range(n):
|
||||
for j in range(n):
|
||||
if (j, (n-1)-i) in blocks:
|
||||
|
@ -94,7 +94,7 @@ def do_something(back_pointer, goal, start):
|
|||
grid[(n-1)-y_c][x_c] = "-"
|
||||
x = back_pointer[x]
|
||||
grid[(n-1)][0] = "-"
|
||||
|
||||
|
||||
|
||||
for i in xrange(n):
|
||||
for j in range(n):
|
||||
|
@ -112,7 +112,7 @@ def do_something(back_pointer, goal, start):
|
|||
print("PATH TAKEN BY THE ALGORITHM IS:-")
|
||||
x = back_pointer[goal]
|
||||
while x != start:
|
||||
print(x, end=' ')
|
||||
print(x, end=' ')
|
||||
x = back_pointer[x]
|
||||
print(x)
|
||||
quit()
|
||||
|
@ -153,7 +153,7 @@ def expand_state(s, j, visited, g_function, close_list_anchor, close_list_inad,
|
|||
if key(neighbours, var, goal, g_function) <= W2 * key(neighbours, 0, goal, g_function):
|
||||
# print("why not plssssssssss")
|
||||
open_list[j].put(neighbours, key(neighbours, var, goal, g_function))
|
||||
|
||||
|
||||
|
||||
# print
|
||||
|
||||
|
@ -212,7 +212,7 @@ def multi_a_star(start, goal, n_hueristic):
|
|||
for i in range(n_hueristic):
|
||||
open_list.append(PriorityQueue())
|
||||
open_list[i].put(start, key(start, i, goal, g_function))
|
||||
|
||||
|
||||
close_list_anchor = []
|
||||
close_list_inad = []
|
||||
while open_list[0].minkey() < float('inf'):
|
||||
|
@ -263,4 +263,7 @@ def multi_a_star(start, goal, n_hueristic):
|
|||
print()
|
||||
print("# is an obstacle")
|
||||
print("- is the path taken by algorithm")
|
||||
multi_a_star(start, goal, n_hueristic)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
multi_a_star(start, goal, n_hueristic)
|
||||
|
|
|
@ -1,19 +1,5 @@
|
|||
from __future__ import print_function
|
||||
# n - no of nodes, m - no of edges
|
||||
n, m = list(map(int,input().split()))
|
||||
|
||||
g = [[] for i in range(n)] #graph
|
||||
r = [[] for i in range(n)] #reversed graph
|
||||
# input graph data (edges)
|
||||
for i in range(m):
|
||||
u, v = list(map(int,input().split()))
|
||||
g[u].append(v)
|
||||
r[v].append(u)
|
||||
|
||||
stack = []
|
||||
visit = [False]*n
|
||||
scc = []
|
||||
component = []
|
||||
|
||||
def dfs(u):
|
||||
global g, r, scc, component, visit, stack
|
||||
|
@ -43,4 +29,21 @@ def kosaraju():
|
|||
scc.append(component)
|
||||
return scc
|
||||
|
||||
print(kosaraju())
|
||||
|
||||
if __name__ == "__main__":
|
||||
# n - no of nodes, m - no of edges
|
||||
n, m = list(map(int,input().strip().split()))
|
||||
|
||||
g = [[] for i in range(n)] #graph
|
||||
r = [[] for i in range(n)] #reversed graph
|
||||
# input graph data (edges)
|
||||
for i in range(m):
|
||||
u, v = list(map(int,input().strip().split()))
|
||||
g[u].append(v)
|
||||
r[v].append(u)
|
||||
|
||||
stack = []
|
||||
visit = [False]*n
|
||||
scc = []
|
||||
component = []
|
||||
print(kosaraju())
|
||||
|
|
Loading…
Reference in New Issue
Block a user