Travis CI: Add pytest --doctest-modules graphs (#1018)

This commit is contained in:
cclauss 2019-07-17 06:07:25 +02:00 committed by GitHub
parent 267b5eff40
commit 7cdda931fd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 145 additions and 132 deletions

View File

@ -21,6 +21,7 @@ script:
digital_image_processing
divide_and_conquer
dynamic_programming
graphs
hashes
linear_algebra_python
matrix

View File

@ -10,42 +10,44 @@ try:
except NameError:
xrange = range # Python 3
# Accept No. of Nodes and edges
n, m = map(int, raw_input().split(" "))
# Initialising Dictionary of edges
g = {}
for i in xrange(n):
g[i + 1] = []
if __name__ == "__main__":
# Accept No. of Nodes and edges
n, m = map(int, raw_input().split(" "))
"""
--------------------------------------------------------------------------------
Accepting edges of Unweighted Directed Graphs
--------------------------------------------------------------------------------
"""
for _ in xrange(m):
x, y = map(int, raw_input().split(" "))
g[x].append(y)
# Initialising Dictionary of edges
g = {}
for i in xrange(n):
g[i + 1] = []
"""
--------------------------------------------------------------------------------
Accepting edges of Unweighted Undirected Graphs
--------------------------------------------------------------------------------
"""
for _ in xrange(m):
x, y = map(int, raw_input().split(" "))
g[x].append(y)
g[y].append(x)
"""
----------------------------------------------------------------------------
Accepting edges of Unweighted Directed Graphs
----------------------------------------------------------------------------
"""
for _ in xrange(m):
x, y = map(int, raw_input().strip().split(" "))
g[x].append(y)
"""
--------------------------------------------------------------------------------
Accepting edges of Weighted Undirected Graphs
--------------------------------------------------------------------------------
"""
for _ in xrange(m):
x, y, r = map(int, raw_input().split(" "))
g[x].append([y, r])
g[y].append([x, r])
"""
----------------------------------------------------------------------------
Accepting edges of Unweighted Undirected Graphs
----------------------------------------------------------------------------
"""
for _ in xrange(m):
x, y = map(int, raw_input().strip().split(" "))
g[x].append(y)
g[y].append(x)
"""
----------------------------------------------------------------------------
Accepting edges of Weighted Undirected Graphs
----------------------------------------------------------------------------
"""
for _ in xrange(m):
x, y, r = map(int, raw_input().strip().split(" "))
g[x].append([y, r])
g[y].append([x, r])
"""
--------------------------------------------------------------------------------
@ -168,9 +170,10 @@ def topo(G, ind=None, Q=[1]):
def adjm():
n, a = raw_input(), []
n = raw_input().strip()
a = []
for i in xrange(n):
a.append(map(int, raw_input().split()))
a.append(map(int, raw_input().strip().split()))
return a, n

View File

@ -34,21 +34,21 @@ def BellmanFord(graph, V, E, src):
#MAIN
V = int(input("Enter number of vertices: "))
E = int(input("Enter number of edges: "))
if __name__ == "__main__":
V = int(input("Enter number of vertices: ").strip())
E = int(input("Enter number of edges: ").strip())
graph = [dict() for j in range(E)]
graph = [dict() for j in range(E)]
for i in range(V):
graph[i][i] = 0.0
for i in range(V):
graph[i][i] = 0.0
for i in range(E):
print("\nEdge ",i+1)
src = int(input("Enter source:"))
dst = int(input("Enter destination:"))
weight = float(input("Enter weight:"))
graph[i] = {"src": src,"dst": dst, "weight": weight}
for i in range(E):
print("\nEdge ",i+1)
src = int(input("Enter source:").strip())
dst = int(input("Enter destination:").strip())
weight = float(input("Enter weight:").strip())
graph[i] = {"src": src,"dst": dst, "weight": weight}
gsrc = int(input("\nEnter shortest path source:"))
BellmanFord(graph, V, E, gsrc)
gsrc = int(input("\nEnter shortest path source:").strip())
BellmanFord(graph, V, E, gsrc)

View File

@ -37,21 +37,21 @@ def Dijkstra(graph, V, src):
#MAIN
V = int(input("Enter number of vertices: "))
E = int(input("Enter number of edges: "))
if __name__ == "__main__":
V = int(input("Enter number of vertices: ").strip())
E = int(input("Enter number of edges: ").strip())
graph = [[float('inf') for i in range(V)] for j in range(V)]
graph = [[float('inf') for i in range(V)] for j in range(V)]
for i in range(V):
graph[i][i] = 0.0
for i in range(V):
graph[i][i] = 0.0
for i in range(E):
print("\nEdge ",i+1)
src = int(input("Enter source:"))
dst = int(input("Enter destination:"))
weight = float(input("Enter weight:"))
graph[src][dst] = weight
for i in range(E):
print("\nEdge ",i+1)
src = int(input("Enter source:").strip())
dst = int(input("Enter destination:").strip())
weight = float(input("Enter weight:").strip())
graph[src][dst] = weight
gsrc = int(input("\nEnter shortest path source:"))
Dijkstra(graph, V, gsrc)
gsrc = int(input("\nEnter shortest path source:").strip())
Dijkstra(graph, V, gsrc)

View File

@ -1,32 +1,34 @@
from __future__ import print_function
num_nodes, num_edges = list(map(int,input().split()))
edges = []
if __name__ == "__main__":
num_nodes, num_edges = list(map(int, input().strip().split()))
for i in range(num_edges):
node1, node2, cost = list(map(int,input().split()))
edges.append((i,node1,node2,cost))
edges = []
edges = sorted(edges, key=lambda edge: edge[3])
for i in range(num_edges):
node1, node2, cost = list(map(int, input().strip().split()))
edges.append((i,node1,node2,cost))
parent = [i for i in range(num_nodes)]
edges = sorted(edges, key=lambda edge: edge[3])
def find_parent(i):
if(i != parent[i]):
parent[i] = find_parent(parent[i])
return parent[i]
parent = list(range(num_nodes))
minimum_spanning_tree_cost = 0
minimum_spanning_tree = []
def find_parent(i):
if i != parent[i]:
parent[i] = find_parent(parent[i])
return parent[i]
for edge in edges:
parent_a = find_parent(edge[1])
parent_b = find_parent(edge[2])
if(parent_a != parent_b):
minimum_spanning_tree_cost += edge[3]
minimum_spanning_tree.append(edge)
parent[parent_a] = parent_b
minimum_spanning_tree_cost = 0
minimum_spanning_tree = []
print(minimum_spanning_tree_cost)
for edge in minimum_spanning_tree:
print(edge)
for edge in edges:
parent_a = find_parent(edge[1])
parent_b = find_parent(edge[2])
if parent_a != parent_b:
minimum_spanning_tree_cost += edge[3]
minimum_spanning_tree.append(edge)
parent[parent_a] = parent_b
print(minimum_spanning_tree_cost)
for edge in minimum_spanning_tree:
print(edge)

View File

@ -100,12 +100,13 @@ def PrimsAlgorithm(l):
Nbr_TV[ v[0] ] = vertex
return TreeEdges
# < --------- Prims Algorithm --------- >
n = int(input("Enter number of vertices: "))
e = int(input("Enter number of edges: "))
adjlist = defaultdict(list)
for x in range(e):
l = [int(x) for x in input().split()]
adjlist[l[0]].append([ l[1], l[2] ])
adjlist[l[1]].append([ l[0], l[2] ])
print(PrimsAlgorithm(adjlist))
if __name__ == "__main__":
# < --------- Prims Algorithm --------- >
n = int(input("Enter number of vertices: ").strip())
e = int(input("Enter number of edges: ").strip())
adjlist = defaultdict(list)
for x in range(e):
l = [int(x) for x in input().strip().split()]
adjlist[l[0]].append([ l[1], l[2] ])
adjlist[l[1]].append([ l[0], l[2] ])
print(PrimsAlgorithm(adjlist))

View File

@ -263,4 +263,7 @@ def multi_a_star(start, goal, n_hueristic):
print()
print("# is an obstacle")
print("- is the path taken by algorithm")
multi_a_star(start, goal, n_hueristic)
if __name__ == "__main__":
multi_a_star(start, goal, n_hueristic)

View File

@ -1,19 +1,5 @@
from __future__ import print_function
# n - no of nodes, m - no of edges
n, m = list(map(int,input().split()))
g = [[] for i in range(n)] #graph
r = [[] for i in range(n)] #reversed graph
# input graph data (edges)
for i in range(m):
u, v = list(map(int,input().split()))
g[u].append(v)
r[v].append(u)
stack = []
visit = [False]*n
scc = []
component = []
def dfs(u):
global g, r, scc, component, visit, stack
@ -43,4 +29,21 @@ def kosaraju():
scc.append(component)
return scc
print(kosaraju())
if __name__ == "__main__":
# n - no of nodes, m - no of edges
n, m = list(map(int,input().strip().split()))
g = [[] for i in range(n)] #graph
r = [[] for i in range(n)] #reversed graph
# input graph data (edges)
for i in range(m):
u, v = list(map(int,input().strip().split()))
g[u].append(v)
r[v].append(u)
stack = []
visit = [False]*n
scc = []
component = []
print(kosaraju())