From 7cf3db184320a454e545882408b8c2f561ef0cdb Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Tue, 6 Aug 2019 21:32:27 +0200 Subject: [PATCH] Add test for QuadraticEquation() (#1107) --- maths/quadratic_equations_complex_numbers.py | 64 ++++++++++---------- 1 file changed, 32 insertions(+), 32 deletions(-) diff --git a/maths/quadratic_equations_complex_numbers.py b/maths/quadratic_equations_complex_numbers.py index c3842fee5..8f9750860 100644 --- a/maths/quadratic_equations_complex_numbers.py +++ b/maths/quadratic_equations_complex_numbers.py @@ -1,39 +1,39 @@ -import math +from math import sqrt +from typing import Tuple -def QuadraticEquation(a,b,c): + +def QuadraticEquation(a: int, b: int, c: int) -> Tuple[str, str]: """ - Prints the solutions for a quadratic equation, given the numerical coefficients a, b and c, - for a*x*x + b*x + c. - Ex.: a = 1, b = 3, c = -4 - Solution1 = 1 and Solution2 = -4 + Given the numerical coefficients a, b and c, + prints the solutions for a quadratic equation, for a*x*x + b*x + c. + + >>> QuadraticEquation(a=1, b=3, c=-4) + ('1.0', '-4.0') + >>> QuadraticEquation(5, 6, 1) + ('-0.2', '-1.0') """ - Delta = b*b - 4*a*c - if a != 0: - if Delta >= 0: - Solution1 = (-b + math.sqrt(Delta))/(2*a) - Solution2 = (-b - math.sqrt(Delta))/(2*a) - print("The equation solutions are: ", Solution1," and ", Solution2) - else: - """ - Treats cases of Complexes Solutions(i = imaginary unit) - Ex.: a = 5, b = 2, c = 1 - Solution1 = (- 2 + 4.0 *i)/2 and Solution2 = (- 2 + 4.0 *i)/ 10 - """ - if b > 0: - print("The equation solutions are: (-",b,"+",math.sqrt(-Delta),"*i)/2 and (-",b,"+",math.sqrt(-Delta),"*i)/", 2*a) - if b < 0: - print("The equation solutions are: (",b,"+",math.sqrt(-Delta),"*i)/2 and (",b,"+",math.sqrt(-Delta),"*i/",2*a) - if b == 0: - print("The equation solutions are: (",math.sqrt(-Delta),"*i)/2 and ",math.sqrt(-Delta),"*i)/", 2*a) - else: - print("Error. Please, coeficient 'a' must not be zero for quadratic equations.") + if a == 0: + raise ValueError("Coefficient 'a' must not be zero for quadratic equations.") + delta = b * b - 4 * a * c + if delta >= 0: + return str((-b + sqrt(delta)) / (2 * a)), str((-b - sqrt(delta)) / (2 * a)) + """ + Treats cases of Complexes Solutions(i = imaginary unit) + Ex.: a = 5, b = 2, c = 1 + Solution1 = (- 2 + 4.0 *i)/2 and Solution2 = (- 2 + 4.0 *i)/ 10 + """ + snd = sqrt(-delta) + if b == 0: + return f"({snd} * i) / 2", f"({snd} * i) / {2 * a}" + b = -abs(b) + return f"({b}+{snd} * i) / 2", f"({b}+{snd} * i) / {2 * a}" + + def main(): - a = 5 - b = 6 - c = 1 - - QuadraticEquation(a,b,c) # The equation solutions are: -0.2 and -1.0 + solutions = QuadraticEquation(a=5, b=6, c=1) + print("The equation solutions are: {} and {}".format(*solutions)) + # The equation solutions are: -0.2 and -1.0 -if __name__ == '__main__': +if __name__ == "__main__": main()