[Project Euler] Fix code style in Problem 41 (#2992)

* add problem title and link, fix f-string

Signed-off-by: joan.rosellr <joan.rosellr@gmail.com>

* fix code style and improve doctests

Signed-off-by: joan.rosellr <joan.rosellr@gmail.com>

* undo changes to the main call

Signed-off-by: joan.rosellr <joan.rosellr@gmail.com>

* remove assignment operator in f-string

Signed-off-by: joan.rosellr <joan.rosellr@gmail.com>

* add newline after first import to attempt to fix pre-commit workflow

Signed-off-by: joan.rosellr <joan.rosellr@gmail.com>

* undo doctest changes, rename compute_pandigital_primes to solution

Signed-off-by: joan.rosellr <joan.rosellr@gmail.com>

* update solution to return the actual solution instead of a list

Signed-off-by: joan.rosellr <joan.rosellr@gmail.com>

* Update sol1.py

Co-authored-by: Dhruv <dhruvmanila@gmail.com>
This commit is contained in:
Joan 2020-10-08 10:27:07 +02:00 committed by GitHub
parent 719c5562d9
commit 7d54056497
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,20 +1,20 @@
"""
Pandigital prime
Problem 41: https://projecteuler.net/problem=41
We shall say that an n-digit number is pandigital if it makes use of all the digits
1 to n exactly once. For example, 2143 is a 4-digit pandigital and is also prime.
What is the largest n-digit pandigital prime that exists?
All pandigital numbers except for 1, 4 ,7 pandigital numbers are divisible by 3.
So we will check only 7 digit pandigital numbers to obtain the largest possible
pandigital prime.
"""
from __future__ import annotations
from itertools import permutations
from math import sqrt
"""
We shall say that an n-digit number is pandigital if it makes use of all the digits
1 to n exactly once. For example, 2143 is a 4-digit pandigital and is also prime.
What is the largest n-digit pandigital prime that exists?
"""
"""
All pandigital numbers except for 1, 4 ,7 pandigital numbers are divisible by 3.
So we will check only 7 digit panddigital numbers to obtain the largest possible
pandigital prime.
"""
def is_prime(n: int) -> bool:
"""
@ -35,20 +35,22 @@ def is_prime(n: int) -> bool:
return True
def compute_pandigital_primes(n: int) -> list[int]:
def solution(n: int = 7) -> int:
"""
Returns a list of all n-digit pandigital primes.
>>> compute_pandigital_primes(2)
[]
>>> max(compute_pandigital_primes(4))
Returns the maximum pandigital prime number of length n.
If there are none, then it will return 0.
>>> solution(2)
0
>>> solution(4)
4231
>>> max(compute_pandigital_primes(7))
>>> solution(7)
7652413
"""
pandigital_str = "".join(str(i) for i in range(1, n + 1))
perm_list = [int("".join(i)) for i in permutations(pandigital_str, n)]
return [num for num in perm_list if is_prime(num)]
pandigitals = [num for num in perm_list if is_prime(num)]
return max(pandigitals) if pandigitals else 0
if __name__ == "__main__":
print(f"{max(compute_pandigital_primes(7)) = }")
print(f"{solution() = }")