From 7dee330c83b8b700af46edbc6211d496c4bebd3a Mon Sep 17 00:00:00 2001 From: thor-harsh <105957576+thor-harsh@users.noreply.github.com> Date: Fri, 18 Aug 2023 18:42:32 +0530 Subject: [PATCH] Update k_means_clust.py --- machine_learning/k_means_clust.py | 27 ++++++++++++++------------- 1 file changed, 14 insertions(+), 13 deletions(-) diff --git a/machine_learning/k_means_clust.py b/machine_learning/k_means_clust.py index 7c8142aab..83ed8374b 100644 --- a/machine_learning/k_means_clust.py +++ b/machine_learning/k_means_clust.py @@ -10,11 +10,11 @@ Inputs: - k , number of clusters to create. - initial_centroids , initial centroid values generated by utility function(mentioned in usage). - - maxiter , maximum number of iterations to process. - - heterogeneity , empty list that will be filled with hetrogeneity values if passed + - maxiter , the maximum number of iterations to process. + - heterogeneity, empty list that will be filled with heterogeneity values if passed to kmeans func. Usage: - 1. define 'k' value, 'X' features array and 'hetrogeneity' empty list + 1. define 'k' value, 'X' features array and 'heterogeneity' empty list 2. create initial_centroids, initial_centroids = get_initial_centroids( X, @@ -31,8 +31,8 @@ Usage: record_heterogeneity=heterogeneity, verbose=True # whether to print logs in console or not.(default=False) ) - 4. Plot the loss function, hetrogeneity values for every iteration saved in - hetrogeneity list. + 4. Plot the loss function, heterogeneity values for every iteration saved in + heterogeneity list. plot_heterogeneity( heterogeneity, k @@ -46,6 +46,7 @@ import numpy as np import pandas as pd from matplotlib import pyplot as plt from sklearn.metrics import pairwise_distances +import doctest warnings.filterwarnings("ignore") @@ -198,10 +199,10 @@ def report_generator( df: pd.DataFrame, clustering_variables: np.ndarray, fill_missing_report=None ) -> pd.DataFrame: """ - Function generates easy-erading clustering report. It takes 2 arguments as an input: - DataFrame - dataframe with predicted cluester column; - FillMissingReport - dictionary of rules how we are going to fill missing - values of for final report generate (not included in modeling); + Function generates an easy-reading clustering report. It takes 3 arguments as input: + DataFrame,predicted cluster column, + FillMissingReport - dictionary of rules on how we are going to fill in missing + values of for final report generate (not included in modelling); in order to run the function following libraries must be imported: import pandas as pd import numpy as np @@ -306,10 +307,10 @@ def report_generator( a.columns = report.columns # rename columns to match report report = report.drop( report[report.Type == "count"].index - ) # drop count values except cluster size + ) # drop count values except for cluster size report = pd.concat( - [report, a, clustersize, clusterproportion], axis=0 - ) # concat report with clustert size and nan values + [report, a, cluster size, clusterproportion], axis=0 + ) # concat report with cluster size and nan values report["Mark"] = report["Features"].isin(clustering_variables) cols = report.columns.tolist() cols = cols[0:2] + cols[-1:] + cols[2:-1] @@ -343,6 +344,6 @@ def report_generator( if __name__ == "__main__": - import doctest + doctest.testmod()