mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 00:07:00 +00:00
- Implemented find_lanczos_eigenvectors
to approximate the largest eigenvalues and corresponding eigenvectors of a graph based on its adjacency list. (#11906)
- Utilized `lanczos_iteration` to construct tridiagonal matrices, optimized for large, sparse matrices. - Added `multiply_matrix_vector` for efficient matrix-vector multiplication using adjacency lists. - Included `validate_adjacency_list` for input validation. - Supports varied graph analysis applications, particularly for analyzing graph centrality. - Included type hints, comprehensive docstrings, and doctests. - PEP-8 compliant, with optimized handling of inputs and outputs. This module provides essential tools for eigenvalue-based graph analysis, ideal for centrality insights and structural assessments.
This commit is contained in:
parent
75c5c41113
commit
7e55fb6474
206
graphs/lanczos_eigenvectors.py
Normal file
206
graphs/lanczos_eigenvectors.py
Normal file
|
@ -0,0 +1,206 @@
|
||||||
|
"""
|
||||||
|
Lanczos Method for Finding Eigenvalues and Eigenvectors of a Graph.
|
||||||
|
|
||||||
|
This module demonstrates the Lanczos method to approximate the largest eigenvalues
|
||||||
|
and corresponding eigenvectors of a symmetric matrix represented as a graph's
|
||||||
|
adjacency list. The method efficiently handles large, sparse matrices by converting
|
||||||
|
the graph to a tridiagonal matrix, whose eigenvalues and eigenvectors are then
|
||||||
|
computed.
|
||||||
|
|
||||||
|
Key Functions:
|
||||||
|
- `find_lanczos_eigenvectors`: Computes the k largest eigenvalues and vectors.
|
||||||
|
- `lanczos_iteration`: Constructs the tridiagonal matrix and orthonormal basis vectors.
|
||||||
|
- `multiply_matrix_vector`: Multiplies an adjacency list graph with a vector.
|
||||||
|
|
||||||
|
Complexity:
|
||||||
|
- Time: O(k * n), where k is the number of eigenvalues and n is the matrix size.
|
||||||
|
- Space: O(n), due to sparse representation and tridiagonal matrix structure.
|
||||||
|
|
||||||
|
Further Reading:
|
||||||
|
- Lanczos Algorithm: https://en.wikipedia.org/wiki/Lanczos_algorithm
|
||||||
|
- Eigenvector Centrality: https://en.wikipedia.org/wiki/Eigenvector_centrality
|
||||||
|
|
||||||
|
Example Usage:
|
||||||
|
Given a graph represented by an adjacency list, the `find_lanczos_eigenvectors`
|
||||||
|
function returns the largest eigenvalues and eigenvectors. This can be used to
|
||||||
|
analyze graph centrality.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
def validate_adjacency_list(graph: list[list[int | None]]) -> None:
|
||||||
|
"""Validates the adjacency list format for the graph.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
graph: A list of lists where each sublist contains the neighbors of a node.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: If the graph is not a list of lists, or if any node has
|
||||||
|
invalid neighbors (e.g., out-of-range or non-integer values).
|
||||||
|
|
||||||
|
>>> validate_adjacency_list([[1, 2], [0], [0, 1]])
|
||||||
|
>>> validate_adjacency_list([[]]) # No neighbors, valid case
|
||||||
|
>>> validate_adjacency_list([[1], [2], [-1]]) # Invalid neighbor
|
||||||
|
Traceback (most recent call last):
|
||||||
|
...
|
||||||
|
ValueError: Invalid neighbor -1 in node 2 adjacency list.
|
||||||
|
"""
|
||||||
|
if not isinstance(graph, list):
|
||||||
|
raise ValueError("Graph should be a list of lists.")
|
||||||
|
|
||||||
|
for node_index, neighbors in enumerate(graph):
|
||||||
|
if not isinstance(neighbors, list):
|
||||||
|
no_neighbors_message: str = (
|
||||||
|
f"Node {node_index} should have a list of neighbors."
|
||||||
|
)
|
||||||
|
raise ValueError(no_neighbors_message)
|
||||||
|
for neighbor_index in neighbors:
|
||||||
|
if (
|
||||||
|
not isinstance(neighbor_index, int)
|
||||||
|
or neighbor_index < 0
|
||||||
|
or neighbor_index >= len(graph)
|
||||||
|
):
|
||||||
|
invalid_neighbor_message: str = (
|
||||||
|
f"Invalid neighbor {neighbor_index} in node {node_index} "
|
||||||
|
f"adjacency list."
|
||||||
|
)
|
||||||
|
raise ValueError(invalid_neighbor_message)
|
||||||
|
|
||||||
|
|
||||||
|
def lanczos_iteration(
|
||||||
|
graph: list[list[int | None]], num_eigenvectors: int
|
||||||
|
) -> tuple[np.ndarray, np.ndarray]:
|
||||||
|
"""Constructs the tridiagonal matrix and orthonormal basis vectors using the
|
||||||
|
Lanczos method.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
graph: The graph represented as a list of adjacency lists.
|
||||||
|
num_eigenvectors: The number of largest eigenvalues and eigenvectors
|
||||||
|
to approximate.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A tuple containing:
|
||||||
|
- tridiagonal_matrix: A (num_eigenvectors x num_eigenvectors) symmetric
|
||||||
|
matrix.
|
||||||
|
- orthonormal_basis: A (num_nodes x num_eigenvectors) matrix of orthonormal
|
||||||
|
basis vectors.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: If num_eigenvectors is less than 1 or greater than the number of
|
||||||
|
nodes.
|
||||||
|
|
||||||
|
>>> graph = [[1, 2], [0, 2], [0, 1]]
|
||||||
|
>>> T, Q = lanczos_iteration(graph, 2)
|
||||||
|
>>> T.shape == (2, 2) and Q.shape == (3, 2)
|
||||||
|
True
|
||||||
|
"""
|
||||||
|
num_nodes: int = len(graph)
|
||||||
|
if not (1 <= num_eigenvectors <= num_nodes):
|
||||||
|
raise ValueError(
|
||||||
|
"Number of eigenvectors must be between 1 and the number of "
|
||||||
|
"nodes in the graph."
|
||||||
|
)
|
||||||
|
|
||||||
|
orthonormal_basis: np.ndarray = np.zeros((num_nodes, num_eigenvectors))
|
||||||
|
tridiagonal_matrix: np.ndarray = np.zeros((num_eigenvectors, num_eigenvectors))
|
||||||
|
|
||||||
|
rng = np.random.default_rng()
|
||||||
|
initial_vector: np.ndarray = rng.random(num_nodes)
|
||||||
|
initial_vector /= np.sqrt(np.dot(initial_vector, initial_vector))
|
||||||
|
orthonormal_basis[:, 0] = initial_vector
|
||||||
|
|
||||||
|
prev_beta: float = 0.0
|
||||||
|
for iter_index in range(num_eigenvectors):
|
||||||
|
result_vector: np.ndarray = multiply_matrix_vector(
|
||||||
|
graph, orthonormal_basis[:, iter_index]
|
||||||
|
)
|
||||||
|
if iter_index > 0:
|
||||||
|
result_vector -= prev_beta * orthonormal_basis[:, iter_index - 1]
|
||||||
|
alpha_value: float = np.dot(orthonormal_basis[:, iter_index], result_vector)
|
||||||
|
result_vector -= alpha_value * orthonormal_basis[:, iter_index]
|
||||||
|
|
||||||
|
prev_beta = np.sqrt(np.dot(result_vector, result_vector))
|
||||||
|
if iter_index < num_eigenvectors - 1 and prev_beta > 1e-10:
|
||||||
|
orthonormal_basis[:, iter_index + 1] = result_vector / prev_beta
|
||||||
|
tridiagonal_matrix[iter_index, iter_index] = alpha_value
|
||||||
|
if iter_index < num_eigenvectors - 1:
|
||||||
|
tridiagonal_matrix[iter_index, iter_index + 1] = prev_beta
|
||||||
|
tridiagonal_matrix[iter_index + 1, iter_index] = prev_beta
|
||||||
|
return tridiagonal_matrix, orthonormal_basis
|
||||||
|
|
||||||
|
|
||||||
|
def multiply_matrix_vector(
|
||||||
|
graph: list[list[int | None]], vector: np.ndarray
|
||||||
|
) -> np.ndarray:
|
||||||
|
"""Performs multiplication of a graph's adjacency list representation with a vector.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
graph: The adjacency list of the graph.
|
||||||
|
vector: A 1D numpy array representing the vector to multiply.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A numpy array representing the product of the adjacency list and the vector.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: If the vector's length does not match the number of nodes in the
|
||||||
|
graph.
|
||||||
|
|
||||||
|
>>> multiply_matrix_vector([[1, 2], [0, 2], [0, 1]], np.array([1, 1, 1]))
|
||||||
|
array([2., 2., 2.])
|
||||||
|
>>> multiply_matrix_vector([[1, 2], [0, 2], [0, 1]], np.array([0, 1, 0]))
|
||||||
|
array([1., 0., 1.])
|
||||||
|
"""
|
||||||
|
num_nodes: int = len(graph)
|
||||||
|
if vector.shape[0] != num_nodes:
|
||||||
|
raise ValueError("Vector length must match the number of nodes in the graph.")
|
||||||
|
|
||||||
|
result: np.ndarray = np.zeros(num_nodes)
|
||||||
|
for node_index, neighbors in enumerate(graph):
|
||||||
|
for neighbor_index in neighbors:
|
||||||
|
result[node_index] += vector[neighbor_index]
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
def find_lanczos_eigenvectors(
|
||||||
|
graph: list[list[int | None]], num_eigenvectors: int
|
||||||
|
) -> tuple[np.ndarray, np.ndarray]:
|
||||||
|
"""Computes the largest eigenvalues and their corresponding eigenvectors using the
|
||||||
|
Lanczos method.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
graph: The graph as a list of adjacency lists.
|
||||||
|
num_eigenvectors: Number of largest eigenvalues and eigenvectors to compute.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A tuple containing:
|
||||||
|
- eigenvalues: 1D array of the largest eigenvalues in descending order.
|
||||||
|
- eigenvectors: 2D array where each column is an eigenvector corresponding
|
||||||
|
to an eigenvalue.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: If the graph format is invalid or num_eigenvectors is out of bounds.
|
||||||
|
|
||||||
|
>>> eigenvalues, eigenvectors = find_lanczos_eigenvectors(
|
||||||
|
... [[1, 2], [0, 2], [0, 1]], 2
|
||||||
|
... )
|
||||||
|
>>> len(eigenvalues) == 2 and eigenvectors.shape[1] == 2
|
||||||
|
True
|
||||||
|
"""
|
||||||
|
validate_adjacency_list(graph)
|
||||||
|
tridiagonal_matrix, orthonormal_basis = lanczos_iteration(graph, num_eigenvectors)
|
||||||
|
eigenvalues, eigenvectors = np.linalg.eigh(tridiagonal_matrix)
|
||||||
|
return eigenvalues[::-1], np.dot(orthonormal_basis, eigenvectors[:, ::-1])
|
||||||
|
|
||||||
|
|
||||||
|
def main() -> None:
|
||||||
|
"""
|
||||||
|
Main driver function for testing the implementation with doctests.
|
||||||
|
"""
|
||||||
|
import doctest
|
||||||
|
|
||||||
|
doctest.testmod()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
Loading…
Reference in New Issue
Block a user