contribution guidelines checks (#1787)

* spelling corrections

* review

* improved documentation, removed redundant variables, added testing

* added type hint

* camel case to snake case

* spelling fix

* review

* python --> Python # it is a brand name, not a snake

* explicit cast to int

* spaces in int list

* "!= None" to "is not None"

* Update comb_sort.py

* various spelling corrections in documentation & several variables naming conventions fix

* + char in file name

* import dependency - bug fix

Co-authored-by: John Law <johnlaw.po@gmail.com>
This commit is contained in:
matkosoric 2020-03-04 13:40:28 +01:00 committed by GitHub
parent 2b19e84767
commit 7f04e5cd34
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
57 changed files with 198 additions and 198 deletions

2
.gitignore vendored
View File

@ -26,7 +26,7 @@ wheels/
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# Usually these files are written by a Python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec

View File

@ -263,7 +263,7 @@
* [Support Vector Machines](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/support_vector_machines.py)
## Maths
* [3N+1](https://github.com/TheAlgorithms/Python/blob/master/maths/3n+1.py)
* [3N+1](https://github.com/TheAlgorithms/Python/blob/master/maths/3n_plus_1.py)
* [Abs](https://github.com/TheAlgorithms/Python/blob/master/maths/abs.py)
* [Abs Max](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_max.py)
* [Abs Min](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_min.py)

View File

@ -42,7 +42,7 @@ def solve(board, row):
"""
It creates a state space tree and calls the safe function until it receives a
False Boolean and terminates that branch and backtracks to the next
poosible solution branch.
possible solution branch.
"""
if row >= len(board):
"""
@ -56,7 +56,7 @@ def solve(board, row):
return
for i in range(len(board)):
"""
For every row it iterates through each column to check if it is feesible to place a
For every row it iterates through each column to check if it is feasible to place a
queen there.
If all the combinations for that particular branch are successful the board is
reinitialized for the next possible combination.

View File

@ -65,11 +65,11 @@ class HillCipher:
encrypt_key is an NxN numpy matrix
"""
self.encrypt_key = self.modulus(encrypt_key) # mod36 calc's on the encrypt key
self.checkDeterminant() # validate the determinant of the encryption key
self.check_determinant() # validate the determinant of the encryption key
self.decrypt_key = None
self.break_key = encrypt_key.shape[0]
def checkDeterminant(self):
def check_determinant(self):
det = round(numpy.linalg.det(self.encrypt_key))
if det < 0:
@ -83,7 +83,7 @@ class HillCipher:
)
)
def processText(self, text):
def process_text(self, text):
text = list(text.upper())
text = [char for char in text if char in self.key_string]
@ -94,7 +94,7 @@ class HillCipher:
return "".join(text)
def encrypt(self, text):
text = self.processText(text.upper())
text = self.process_text(text.upper())
encrypted = ""
for i in range(0, len(text) - self.break_key + 1, self.break_key):
@ -109,7 +109,7 @@ class HillCipher:
return encrypted
def makeDecryptKey(self):
def make_decrypt_key(self):
det = round(numpy.linalg.det(self.encrypt_key))
if det < 0:
@ -129,8 +129,8 @@ class HillCipher:
return self.toInt(self.modulus(inv_key))
def decrypt(self, text):
self.decrypt_key = self.makeDecryptKey()
text = self.processText(text.upper())
self.decrypt_key = self.make_decrypt_key()
text = self.process_text(text.upper())
decrypted = ""
for i in range(0, len(text) - self.break_key + 1, self.break_key):

View File

@ -3,7 +3,7 @@ import random
class Onepad:
def encrypt(self, text):
"""Function to encrypt text using psedo-random numbers"""
"""Function to encrypt text using pseudo-random numbers"""
plain = [ord(i) for i in text]
key = []
cipher = []
@ -15,7 +15,7 @@ class Onepad:
return cipher, key
def decrypt(self, cipher, key):
"""Function to decrypt text using psedo-random numbers."""
"""Function to decrypt text using pseudo-random numbers."""
plain = []
for i in range(len(key)):
p = int((cipher[i] - (key[i]) ** 2) / key[i])

View File

@ -28,16 +28,16 @@ class BinarySearchTree:
"""
return str(self.root)
def __reassign_nodes(self, node, newChildren):
if newChildren is not None: # reset its kids
newChildren.parent = node.parent
def __reassign_nodes(self, node, new_children):
if new_children is not None: # reset its kids
new_children.parent = node.parent
if node.parent is not None: # reset its parent
if self.is_right(node): # If it is the right children
node.parent.right = newChildren
node.parent.right = new_children
else:
node.parent.left = newChildren
node.parent.left = new_children
else:
self.root = newChildren
self.root = new_children
def is_right(self, node):
return node == node.parent.right
@ -117,13 +117,13 @@ class BinarySearchTree:
elif node.right is None: # Has only left children
self.__reassign_nodes(node, node.left)
else:
tmpNode = self.get_max(
tmp_node = self.get_max(
node.left
) # Gets the max value of the left branch
self.remove(tmpNode.value)
self.remove(tmp_node.value)
node.value = (
tmpNode.value
) # Assigns the value to the node to delete and keesp tree structure
tmp_node.value
) # Assigns the value to the node to delete and keep tree structure
def preorder_traverse(self, node):
if node is not None:
@ -131,25 +131,25 @@ class BinarySearchTree:
yield from self.preorder_traverse(node.left)
yield from self.preorder_traverse(node.right)
def traversal_tree(self, traversalFunction=None):
def traversal_tree(self, traversal_function=None):
"""
This function traversal the tree.
You can pass a function to traversal the tree as needed by client code
"""
if traversalFunction is None:
if traversal_function is None:
return self.preorder_traverse(self.root)
else:
return traversalFunction(self.root)
return traversal_function(self.root)
def postorder(curr_node):
"""
postOrder (left, right, self)
"""
nodeList = list()
node_list = list()
if curr_node is not None:
nodeList = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node]
return nodeList
node_list = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node]
return node_list
def binary_search_tree():

View File

@ -82,7 +82,7 @@ def binary_tree_count(node_count: int) -> int:
"""
Return the number of possible of binary trees.
:param n: number of nodes
:return: Number of possilble binary trees
:return: Number of possible binary trees
>>> binary_tree_count(5)
5040

View File

@ -21,7 +21,7 @@ class _DoublyLinkedBase:
def has_next_and_prev(self):
return " Prev -> {0}, Next -> {1}".format(
self._prev != None, self._next != None
self._prev is not None, self._next is not None
)
def __init__(self):

View File

@ -62,7 +62,7 @@ class LinkedList: # making main class named linked list
def display(self): # Prints contents of the list
current = self.head
while current != None:
while current is not None:
current.displayLink()
current = current.next
print()

View File

@ -1,4 +1,4 @@
"""Queue represented by a python list"""
"""Queue represented by a Python list"""
class Queue:

View File

@ -2,7 +2,7 @@
Changing contrast with PIL
This algorithm is used in
https://noivce.pythonanywhere.com/ python web app.
https://noivce.pythonanywhere.com/ Python web app.
python/black: True
flake8 : True

View File

@ -344,19 +344,19 @@ def convex_hull_recursive(points):
right_most_point = points[n - 1]
convex_set = {left_most_point, right_most_point}
upperhull = []
lowerhull = []
upper_hull = []
lower_hull = []
for i in range(1, n - 1):
det = _det(left_most_point, right_most_point, points[i])
if det > 0:
upperhull.append(points[i])
upper_hull.append(points[i])
elif det < 0:
lowerhull.append(points[i])
lower_hull.append(points[i])
_construct_hull(upperhull, left_most_point, right_most_point, convex_set)
_construct_hull(lowerhull, right_most_point, left_most_point, convex_set)
_construct_hull(upper_hull, left_most_point, right_most_point, convex_set)
_construct_hull(lower_hull, right_most_point, left_most_point, convex_set)
return sorted(convex_set)

View File

@ -1,6 +1,6 @@
"""
This is a python implementation for questions involving task assignments between people.
This is a Python implementation for questions involving task assignments between people.
Here Bitmasking and DP are used for solving this.
Question :-
@ -25,41 +25,41 @@ class AssignmentUsingBitmask:
self.task = defaultdict(list) # stores the list of persons for each task
# finalmask is used to check if all persons are included by setting all bits to 1
self.finalmask = (1 << len(task_performed)) - 1
# final_mask is used to check if all persons are included by setting all bits to 1
self.final_mask = (1 << len(task_performed)) - 1
def CountWaysUtil(self, mask, taskno):
def CountWaysUtil(self, mask, task_no):
# if mask == self.finalmask all persons are distributed tasks, return 1
if mask == self.finalmask:
if mask == self.final_mask:
return 1
# if not everyone gets the task and no more tasks are available, return 0
if taskno > self.total_tasks:
if task_no > self.total_tasks:
return 0
# if case already considered
if self.dp[mask][taskno] != -1:
return self.dp[mask][taskno]
if self.dp[mask][task_no] != -1:
return self.dp[mask][task_no]
# Number of ways when we don't this task in the arrangement
total_ways_util = self.CountWaysUtil(mask, taskno + 1)
total_ways_util = self.CountWaysUtil(mask, task_no + 1)
# now assign the tasks one by one to all possible persons and recursively assign for the remaining tasks.
if taskno in self.task:
for p in self.task[taskno]:
if task_no in self.task:
for p in self.task[task_no]:
# if p is already given a task
if mask & (1 << p):
continue
# assign this task to p and change the mask value. And recursively assign tasks with the new mask value.
total_ways_util += self.CountWaysUtil(mask | (1 << p), taskno + 1)
total_ways_util += self.CountWaysUtil(mask | (1 << p), task_no + 1)
# save the value.
self.dp[mask][taskno] = total_ways_util
self.dp[mask][task_no] = total_ways_util
return self.dp[mask][taskno]
return self.dp[mask][task_no]
def countNoOfWays(self, task_performed):

View File

@ -28,7 +28,7 @@ class Fibonacci:
[0, 1, 1, 2, 3, 5]
[]
"""
if sequence_no != None:
if sequence_no is not None:
if sequence_no < len(self.fib_array):
return print(self.fib_array[: sequence_no + 1])
else:

View File

@ -11,7 +11,7 @@ import skfuzzy as fuzz
if __name__ == "__main__":
# Create universe of discourse in python using linspace ()
# Create universe of discourse in Python using linspace ()
X = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False)
# Create two fuzzy sets by defining any membership function (trapmf(), gbellmf(),gaussmf(), etc).

View File

@ -8,7 +8,7 @@ def printDist(dist, V):
def BellmanFord(graph: List[Dict[str, int]], V: int, E: int, src: int) -> int:
r"""
"""
Returns shortest paths from a vertex src to all
other vertices.
"""

View File

@ -3,7 +3,7 @@ import random as rand
import math as math
import time
# the dfault weight is 1 if not assigned but all the implementation is weighted
# the default weight is 1 if not assigned but all the implementation is weighted
class DirectedGraph:

View File

@ -6,13 +6,13 @@ def PrimsAlgorithm(l):
nodePosition = []
def getPosition(vertex):
def get_position(vertex):
return nodePosition[vertex]
def setPosition(vertex, pos):
def set_position(vertex, pos):
nodePosition[vertex] = pos
def topToBottom(heap, start, size, positions):
def top_to_bottom(heap, start, size, positions):
if start > size // 2 - 1:
return
else:
@ -28,14 +28,14 @@ def PrimsAlgorithm(l):
heap[m], positions[m] = heap[start], positions[start]
heap[start], positions[start] = temp, temp1
temp = getPosition(positions[m])
setPosition(positions[m], getPosition(positions[start]))
setPosition(positions[start], temp)
temp = get_position(positions[m])
set_position(positions[m], get_position(positions[start]))
set_position(positions[start], temp)
topToBottom(heap, m, size, positions)
top_to_bottom(heap, m, size, positions)
# Update function if value of any node in min-heap decreases
def bottomToTop(val, index, heap, position):
def bottom_to_top(val, index, heap, position):
temp = position[index]
while index != 0:
@ -47,27 +47,27 @@ def PrimsAlgorithm(l):
if val < heap[parent]:
heap[index] = heap[parent]
position[index] = position[parent]
setPosition(position[parent], index)
set_position(position[parent], index)
else:
heap[index] = val
position[index] = temp
setPosition(temp, index)
set_position(temp, index)
break
index = parent
else:
heap[0] = val
position[0] = temp
setPosition(temp, 0)
set_position(temp, 0)
def heapify(heap, positions):
start = len(heap) // 2 - 1
for i in range(start, -1, -1):
topToBottom(heap, i, len(heap), positions)
top_to_bottom(heap, i, len(heap), positions)
def deleteMinimum(heap, positions):
temp = positions[0]
heap[0] = sys.maxsize
topToBottom(heap, 0, len(heap), positions)
top_to_bottom(heap, 0, len(heap), positions)
return temp
visited = [0 for i in range(len(l))]
@ -96,9 +96,9 @@ def PrimsAlgorithm(l):
TreeEdges.append((Nbr_TV[vertex], vertex))
visited[vertex] = 1
for v in l[vertex]:
if visited[v[0]] == 0 and v[1] < Distance_TV[getPosition(v[0])]:
Distance_TV[getPosition(v[0])] = v[1]
bottomToTop(v[1], getPosition(v[0]), Distance_TV, Positions)
if visited[v[0]] == 0 and v[1] < Distance_TV[get_position(v[0])]:
Distance_TV[get_position(v[0])] = v[1]
bottom_to_top(v[1], get_position(v[0]), Distance_TV, Positions)
Nbr_TV[v[0]] = vertex
return TreeEdges

View File

@ -52,25 +52,25 @@ class PriorityQueue:
return (priority, item)
def consistent_hueristic(P, goal):
def consistent_heuristic(P, goal):
# euclidean distance
a = np.array(P)
b = np.array(goal)
return np.linalg.norm(a - b)
def hueristic_2(P, goal):
def heuristic_2(P, goal):
# integer division by time variable
return consistent_hueristic(P, goal) // t
return consistent_heuristic(P, goal) // t
def hueristic_1(P, goal):
def heuristic_1(P, goal):
# manhattan distance
return abs(P[0] - goal[0]) + abs(P[1] - goal[1])
def key(start, i, goal, g_function):
ans = g_function[start] + W1 * hueristics[i](start, goal)
ans = g_function[start] + W1 * heuristics[i](start, goal)
return ans
@ -134,7 +134,7 @@ def expand_state(
open_list,
back_pointer,
):
for itera in range(n_hueristic):
for itera in range(n_heuristic):
open_list[itera].remove_element(s)
# print("s", s)
# print("j", j)
@ -158,30 +158,24 @@ def expand_state(
if neighbours not in close_list_anchor:
open_list[0].put(neighbours, key(neighbours, 0, goal, g_function))
if neighbours not in close_list_inad:
for var in range(1, n_hueristic):
for var in range(1, n_heuristic):
if key(neighbours, var, goal, g_function) <= W2 * key(
neighbours, 0, goal, g_function
):
# print("why not plssssssssss")
open_list[j].put(
neighbours, key(neighbours, var, goal, g_function)
)
# print
def make_common_ground():
some_list = []
# block 1
for x in range(1, 5):
for y in range(1, 6):
some_list.append((x, y))
# line
for x in range(15, 20):
some_list.append((x, 17))
# block 2 big
for x in range(10, 19):
for y in range(1, 15):
some_list.append((x, y))
@ -196,7 +190,7 @@ def make_common_ground():
return some_list
hueristics = {0: consistent_hueristic, 1: hueristic_1, 2: hueristic_2}
heuristics = {0: consistent_heuristic, 1: heuristic_1, 2: heuristic_2}
blocks_blk = [
(0, 1),
@ -229,7 +223,7 @@ blocks = blocks_blk
W1 = 1
W2 = 1
n = 20
n_hueristic = 3 # one consistent and two other inconsistent
n_heuristic = 3 # one consistent and two other inconsistent
# start and end destination
start = (0, 0)
@ -238,26 +232,24 @@ goal = (n - 1, n - 1)
t = 1
def multi_a_star(start, goal, n_hueristic):
def multi_a_star(start, goal, n_heuristic):
g_function = {start: 0, goal: float("inf")}
back_pointer = {start: -1, goal: -1}
open_list = []
visited = set()
for i in range(n_hueristic):
for i in range(n_heuristic):
open_list.append(PriorityQueue())
open_list[i].put(start, key(start, i, goal, g_function))
close_list_anchor = []
close_list_inad = []
while open_list[0].minkey() < float("inf"):
for i in range(1, n_hueristic):
# print("i", i)
for i in range(1, n_heuristic):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= W2 * open_list[0].minkey():
global t
t += 1
# print("less prio")
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float("inf"):
do_something(back_pointer, goal, start)
@ -276,12 +268,10 @@ def multi_a_star(start, goal, n_hueristic):
)
close_list_inad.append(get_s)
else:
# print("more prio")
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float("inf"):
do_something(back_pointer, goal, start)
else:
# print("hoolla")
get_s = open_list[0].top_show()
visited.add(get_s)
expand_state(
@ -319,4 +309,4 @@ def multi_a_star(start, goal, n_hueristic):
if __name__ == "__main__":
multi_a_star(start, goal, n_hueristic)
multi_a_star(start, goal, n_heuristic)

View File

@ -121,7 +121,7 @@ def emitterConverter(sizePar, data):
# counter to control the loop reading
contLoop = 0
for x in dataOrd:
if x != None:
if x is not None:
try:
aux = (binPos[contLoop])[-1 * (bp)]
except IndexError:
@ -224,7 +224,7 @@ def receptorConverter(sizePar, data):
# Counter to control loop reading
contLoop = 0
for x in dataOrd:
if x != None:
if x is not None:
try:
aux = (binPos[contLoop])[-1 * (bp)]
except IndexError:

View File

@ -1,10 +1,10 @@
"""
Linear regression is the most basic type of regression commonly used for
predictive analysis. The idea is pretty simple, we have a dataset and we have
a feature's associated with it. The Features should be choose very cautiously
as they determine, how much our model will be able to make future predictions.
We try to set these Feature weights, over many iterations, so that they best
fits our dataset. In this particular code, i had used a CSGO dataset (ADR vs
predictive analysis. The idea is pretty simple: we have a dataset and we have
features associated with it. Features should be chosen very cautiously
as they determine how much our model will be able to make future predictions.
We try to set the weight of these features, over many iterations, so that they best
fit our dataset. In this particular code, I had used a CSGO dataset (ADR vs
Rating). We try to best fit a line through dataset and estimate the parameters.
"""
import requests

View File

@ -3,7 +3,7 @@ from typing import Tuple, List
def n31(a: int) -> Tuple[List[int], int]:
"""
Returns the Collatz sequence and its length of any postiver integer.
Returns the Collatz sequence and its length of any positive integer.
>>> n31(4)
([4, 2, 1], 3)
"""

View File

@ -14,7 +14,7 @@ def mode(input_list): # Defining function "mode."
>>> mode(input_list) == statistics.mode(input_list)
True
"""
# Copying inputlist to check with the index number later.
# Copying input_list to check with the index number later.
check_list = input_list.copy()
result = list() # Empty list to store the counts of elements in input_list
for x in input_list:

View File

@ -63,7 +63,7 @@ def sum_of_divisors(n: int) -> int:
def euler_phi(n: int) -> int:
"""Calculte Euler's Phi Function.
"""Calculate Euler's Phi Function.
>>> euler_phi(100)
40
"""

View File

@ -1,7 +1,7 @@
import numpy as np
def explicit_euler(ode_func, y0, x0, stepsize, x_end):
def explicit_euler(ode_func, y0, x0, step_size, x_end):
"""
Calculate numeric solution at each step to an ODE using Euler's Method
@ -22,14 +22,14 @@ def explicit_euler(ode_func, y0, x0, stepsize, x_end):
>>> y[-1]
144.77277243257308
"""
N = int(np.ceil((x_end - x0) / stepsize))
N = int(np.ceil((x_end - x0) / step_size))
y = np.zeros((N + 1,))
y[0] = y0
x = x0
for k in range(N):
y[k + 1] = y[k] + stepsize * ode_func(x, y[k])
x += stepsize
y[k + 1] = y[k] + step_size * ode_func(x, y[k])
x += step_size
return y

View File

@ -26,5 +26,5 @@ def factorial(n: int) -> int:
if __name__ == "__main__":
n = int(input("Enter a positivve integer: ").strip() or 0)
n = int(input("Enter a positive integer: ").strip() or 0)
print(f"factorial{n} is {factorial(n)}")

View File

@ -16,8 +16,8 @@ for word in word_list:
word_bysig[signature(word)].append(word)
def anagram(myword):
return word_bysig[signature(myword)]
def anagram(my_word):
return word_bysig[signature(my_word)]
print("finding anagrams...")

View File

@ -26,10 +26,10 @@ class Trie:
result = []
for c, v in d.items():
if c == END:
subresult = [" "]
sub_result = [" "]
else:
subresult = [c + s for s in self._elements(v)]
result.extend(subresult)
sub_result = [c + s for s in self._elements(v)]
result.extend(sub_result)
return tuple(result)

View File

@ -7,12 +7,12 @@ wikipedia/Fischer-Yates-Shuffle.
import random
def FYshuffle(LIST):
for i in range(len(LIST)):
a = random.randint(0, len(LIST) - 1)
b = random.randint(0, len(LIST) - 1)
LIST[a], LIST[b] = LIST[b], LIST[a]
return LIST
def FYshuffle(list):
for i in range(len(list)):
a = random.randint(0, len(list) - 1)
b = random.randint(0, len(list) - 1)
list[a], list[b] = list[b], list[a]
return list
if __name__ == "__main__":

View File

@ -1,4 +1,4 @@
# Python program for generating diamond pattern in python 3.7+
# Python program for generating diamond pattern in Python 3.7+
# Function to print upper half of diamond (pyramid)
def floyd(n):

View File

@ -3,7 +3,7 @@ Created on Thu Oct 5 16:44:23 2017
@author: Christian Bender
This python library contains some useful functions to deal with
This Python library contains some useful functions to deal with
prime numbers and whole numbers.
Overview:

View File

@ -20,7 +20,7 @@ def solution(n):
39893
"""
answer = 0
for i in range(999, 99, -1): # 3 digit nimbers range from 999 down to 100
for i in range(999, 99, -1): # 3 digit numbers range from 999 down to 100
for j in range(999, 99, -1):
t = str(i * j)
if t == t[::-1] and i * j < n:

View File

@ -8,7 +8,7 @@ We can see that the 6th prime is 13. What is the Nth prime number?
from math import sqrt
def isprime(n):
def is_prime(n):
if n == 2:
return True
elif n % 2 == 0:
@ -41,11 +41,11 @@ def solution(n):
j = 1
while i != n and j < 3:
j += 1
if isprime(j):
if is_prime(j):
i += 1
while i != n:
j += 2
if isprime(j):
if is_prime(j):
i += 1
return j

View File

@ -52,10 +52,10 @@ def next_term(a_i, k, i, n):
sub_memo = memo.get(ds_b)
if sub_memo != None:
if sub_memo is not None:
jumps = sub_memo.get(c)
if jumps != None and len(jumps) > 0:
if jumps is not None and len(jumps) > 0:
# find and make the largest jump without going over
max_jump = -1
for _k in range(len(jumps) - 1, -1, -1):

View File

@ -6,14 +6,14 @@ from typing import Iterator
URL_BASE = "https://github.com/TheAlgorithms/Python/blob/master"
def good_filepaths(top_dir: str = ".") -> Iterator[str]:
for dirpath, dirnames, filenames in os.walk(top_dir):
dirnames[:] = [d for d in dirnames if d != "scripts" and d[0] not in "._"]
def good_file_paths(top_dir: str = ".") -> Iterator[str]:
for dir_path, dir_names, filenames in os.walk(top_dir):
dir_names[:] = [d for d in dir_names if d != "scripts" and d[0] not in "._"]
for filename in filenames:
if filename == "__init__.py":
continue
if os.path.splitext(filename)[1] in (".py", ".ipynb"):
yield os.path.join(dirpath, filename).lstrip("./")
yield os.path.join(dir_path, filename).lstrip("./")
def md_prefix(i):
@ -31,7 +31,7 @@ def print_path(old_path: str, new_path: str) -> str:
def print_directory_md(top_dir: str = ".") -> None:
old_path = ""
for filepath in sorted(good_filepaths()):
for filepath in sorted(good_file_paths()):
filepath, filename = os.path.split(filepath)
if filepath != old_path:
old_path = print_path(old_path, filepath)

View File

@ -1,10 +1,10 @@
#!/usr/bin/env python3
import os
from build_directory_md import good_filepaths
from build_directory_md import good_file_paths
filepaths = list(good_filepaths())
assert filepaths, "good_filepaths() failed!"
filepaths = list(good_file_paths())
assert filepaths, "good_file_paths() failed!"
upper_files = [file for file in filepaths if file != file.lower()]

View File

@ -1,5 +1,5 @@
"""
This is pure python implementation of binary search algorithms
This is pure Python implementation of binary search algorithms
For doctests run following command:
python -m doctest -v binary_search.py

View File

@ -1,5 +1,5 @@
"""
This is pure python implementation of interpolation search algorithm
This is pure Python implementation of interpolation search algorithm
"""

View File

@ -1,5 +1,5 @@
"""
This is pure python implementation of linear search algorithm
This is pure Python implementation of linear search algorithm
For doctests run following command:
python -m doctest -v linear_search.py

View File

@ -1,5 +1,5 @@
"""
This is pure python implementation of sentinel linear search algorithm
This is pure Python implementation of sentinel linear search algorithm
For doctests run following command:
python -m doctest -v sentinel_linear_search.py

View File

@ -66,15 +66,15 @@ def simulated_annealing(
if change > 0: # improves the solution
next_state = picked_neighbor
else:
probabililty = (math.e) ** (
probability = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probabililty: # random number within probability
if random.random() < probability: # random number within probability
next_state = picked_neighbor
current_temp = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitaable neighbor
# temperature below threshold, or could not find a suitable neighbor
search_end = True
else:
current_state = next_state

View File

@ -1,5 +1,5 @@
"""
This is pure python implementation of Tabu search algorithm for a Travelling Salesman Problem, that the distances
This is pure Python implementation of Tabu search algorithm for a Travelling Salesman Problem, that the distances
between the cities are symmetric (the distance between city 'a' and city 'b' is the same between city 'b' and city 'a').
The TSP can be represented into a graph. The cities are represented by nodes and the distance between them is
represented by the weight of the ark between the nodes.

View File

@ -14,36 +14,36 @@ def compAndSwap(a, i, j, dire):
# if dir = 1, and in descending order otherwise (means dir=0).
# The sequence to be sorted starts at index position low,
# the parameter cnt is the number of elements to be sorted.
def bitonicMerge(a, low, cnt, dire):
def bitonic_merge(a, low, cnt, dire):
if cnt > 1:
k = int(cnt / 2)
for i in range(low, low + k):
compAndSwap(a, i, i + k, dire)
bitonicMerge(a, low, k, dire)
bitonicMerge(a, low + k, k, dire)
bitonic_merge(a, low, k, dire)
bitonic_merge(a, low + k, k, dire)
# This function first produces a bitonic sequence by recursively
# sorting its two halves in opposite sorting orders, and then
# calls bitonicMerge to make them in the same order
def bitonicSort(a, low, cnt, dire):
# calls bitonic_merge to make them in the same order
def bitonic_sort(a, low, cnt, dire):
if cnt > 1:
k = int(cnt / 2)
bitonicSort(a, low, k, 1)
bitonicSort(a, low + k, k, 0)
bitonicMerge(a, low, cnt, dire)
bitonic_sort(a, low, k, 1)
bitonic_sort(a, low + k, k, 0)
bitonic_merge(a, low, cnt, dire)
# Caller of bitonicSort for sorting the entire array of length N
# Caller of bitonic_sort for sorting the entire array of length N
# in ASCENDING order
def sort(a, N, up):
bitonicSort(a, 0, N, up)
bitonic_sort(a, 0, N, up)
if __name__ == "__main__":
# Driver code to test above
a = []
n = int(input().strip())

View File

@ -1,5 +1,10 @@
"""
This is a pure python implementation of the bogosort algorithm
This is a pure Python implementation of the bogosort algorithm,
also known as permutation sort, stupid sort, slowsort, shotgun sort, or monkey sort.
Bogosort generates random permutations until it guesses the correct one.
More info on: https://en.wikipedia.org/wiki/Bogosort
For doctests run following command:
python -m doctest -v bogo_sort.py
or
@ -25,7 +30,7 @@ def bogo_sort(collection):
[-45, -5, -2]
"""
def isSorted(collection):
def is_sorted(collection):
if len(collection) < 2:
return True
for i in range(len(collection) - 1):
@ -33,7 +38,7 @@ def bogo_sort(collection):
return False
return True
while not isSorted(collection):
while not is_sorted(collection):
random.shuffle(collection)
return collection

View File

@ -1,8 +1,13 @@
"""
This is pure Python implementation of comb sort algorithm.
Comb sort is a relatively simple sorting algorithm originally designed by Wlodzimierz Dobosiewicz in 1980.
Later it was rediscovered by Stephen Lacey and Richard Box in 1991. Comb sort improves on bubble sort.
It was rediscovered by Stephen Lacey and Richard Box in 1991. Comb sort improves on bubble sort algorithm.
In bubble sort, distance (or gap) between two compared elements is always one.
Comb sort improvement is that gap can be much more than 1, in order to prevent slowing down by small values
at the end of a list.
More info on: https://en.wikipedia.org/wiki/Comb_sort
This is pure python implementation of comb sort algorithm
For doctests run following command:
python -m doctest -v comb_sort.py
or
@ -13,42 +18,44 @@ python comb_sort.py
"""
def comb_sort(data):
def comb_sort(data: list) -> list:
"""Pure implementation of comb sort algorithm in Python
:param collection: some mutable ordered collection with heterogeneous
comparable items inside
:return: the same collection ordered by ascending
:param data: mutable collection with comparable items
:return: the same collection in ascending order
Examples:
>>> comb_sort([0, 5, 3, 2, 2])
[0, 2, 2, 3, 5]
>>> comb_sort([])
[]
>>> comb_sort([-2, -5, -45])
[-45, -5, -2]
>>> comb_sort([99, 45, -7, 8, 2, 0, -15, 3])
[-15, -7, 0, 2, 3, 8, 45, 99]
"""
shrink_factor = 1.3
gap = len(data)
swapped = True
i = 0
completed = False
while not completed:
while gap > 1 or swapped:
# Update the gap value for a next comb
gap = int(float(gap) / shrink_factor)
gap = int(gap / shrink_factor)
if gap <= 1:
completed = True
swapped = False
i = 0
while gap + i < len(data):
if data[i] > data[i + gap]:
index = 0
while index + gap < len(data):
if data[index] > data[index + gap]:
# Swap values
data[i], data[i + gap] = data[i + gap], data[i]
swapped = True
i += 1
data[index], data[index + gap] = data[index + gap], data[index]
completed = False
index += 1
return data
if __name__ == "__main__":
import doctest
doctest.testmod()
user_input = input("Enter numbers separated by a comma:\n").strip()
unsorted = [int(item) for item in user_input.split(",")]
print(comb_sort(unsorted))

View File

@ -1,5 +1,5 @@
"""
This is pure python implementation of counting sort algorithm
This is pure Python implementation of counting sort algorithm
For doctests run following command:
python -m doctest -v counting_sort.py
or

View File

@ -1,5 +1,5 @@
"""
This is a pure python implementation of the heap sort algorithm.
This is a pure Python implementation of the heap sort algorithm.
For doctests run following command:
python -m doctest -v heap_sort.py

View File

@ -1,5 +1,5 @@
"""
This is a pure python implementation of the insertion sort algorithm
This is a pure Python implementation of the insertion sort algorithm
For doctests run following command:
python -m doctest -v insertion_sort.py

View File

@ -1,5 +1,5 @@
"""
This is a pure python implementation of the merge sort algorithm
This is a pure Python implementation of the merge sort algorithm
For doctests run following command:
python -m doctest -v merge_sort.py

View File

@ -18,7 +18,7 @@ processLock = Lock()
"""
The function run by the processes that sorts the list
position = the position in the list the prcoess represents, used to know which
position = the position in the list the process represents, used to know which
neighbor we pass our value to
value = the initial value at list[position]
LSend, RSend = the pipes we use to send to our left and right neighbors
@ -35,7 +35,7 @@ def oeProcess(position, value, LSend, RSend, LRcv, RRcv, resultPipe):
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0, 10):
if (i + position) % 2 == 0 and RSend != None:
if (i + position) % 2 == 0 and RSend is not None:
# send your value to your right neighbor
processLock.acquire()
RSend[1].send(value)
@ -48,7 +48,7 @@ def oeProcess(position, value, LSend, RSend, LRcv, RRcv, resultPipe):
# take the lower value since you are on the left
value = min(value, temp)
elif (i + position) % 2 != 0 and LSend != None:
elif (i + position) % 2 != 0 and LSend is not None:
# send your value to your left neighbor
processLock.acquire()
LSend[1].send(value)

View File

@ -1,5 +1,5 @@
"""
This is a pure python implementation of the pancake sort algorithm
This is a pure Python implementation of the pancake sort algorithm
For doctests run following command:
python3 -m doctest -v pancake_sort.py
or

View File

@ -1,5 +1,5 @@
"""
This is a pure python implementation of the quick sort algorithm
This is a pure Python implementation of the quick sort algorithm
For doctests run following command:
python -m doctest -v quick_sort.py

View File

@ -1,5 +1,5 @@
"""
This is a pure python implementation of the selection sort algorithm
This is a pure Python implementation of the selection sort algorithm
For doctests run following command:
python -m doctest -v selection_sort.py

View File

@ -1,5 +1,5 @@
"""
This is a pure python implementation of the shell sort algorithm
This is a pure Python implementation of the shell sort algorithm
For doctests run following command:
python -m doctest -v shell_sort.py

View File

@ -1,7 +1,7 @@
"""
Python implementation of a sort algorithm.
Best Case Scenario : O(n)
Worst Case Scenario : O(n^2) because native python functions:min, max and remove are already O(n)
Worst Case Scenario : O(n^2) because native Python functions:min, max and remove are already O(n)
"""

View File

@ -1,5 +1,5 @@
"""
This is pure python implementation of tree traversal algorithms
This is pure Python implementation of tree traversal algorithms
"""
import queue
from typing import List

View File

@ -51,8 +51,6 @@ def get_domain_name(url: str) -> str:
# Get sub domain name (sub.example.com)
def get_sub_domain_name(url: str) -> str:
"""
This function get sub domin name
>>> get_sub_domain_name("https://a.b.c.d/e/f?g=h,i=j#k")
'a.b.c.d'
>>> get_sub_domain_name("Not a URL!")