From 7fa9b4bf1bc9822517bb0046aebc2e8b2997d3e1 Mon Sep 17 00:00:00 2001 From: Maxim Smolskiy Date: Mon, 30 Dec 2024 14:52:03 +0300 Subject: [PATCH] Fix sphinx/build_docs warnings for dynamic_programming (#12484) * Fix sphinx/build_docs warnings for dynamic_programming * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix * Fix * Fix * Fix * Fix * Fix --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> --- dynamic_programming/all_construct.py | 7 +- dynamic_programming/combination_sum_iv.py | 23 +- dynamic_programming/fizz_buzz.py | 11 +- dynamic_programming/knapsack.py | 40 ++-- .../longest_common_substring.py | 14 +- .../longest_increasing_subsequence.py | 13 +- .../matrix_chain_multiplication.py | 87 +++---- dynamic_programming/max_product_subarray.py | 3 +- .../minimum_squares_to_represent_a_number.py | 1 + dynamic_programming/regex_match.py | 22 +- dynamic_programming/rod_cutting.py | 83 ++++--- dynamic_programming/subset_generation.py | 63 +++--- dynamic_programming/viterbi.py | 212 ++++++++---------- 13 files changed, 294 insertions(+), 285 deletions(-) diff --git a/dynamic_programming/all_construct.py b/dynamic_programming/all_construct.py index 5d585fc7f..ca00f2beb 100644 --- a/dynamic_programming/all_construct.py +++ b/dynamic_programming/all_construct.py @@ -8,9 +8,10 @@ from __future__ import annotations def all_construct(target: str, word_bank: list[str] | None = None) -> list[list[str]]: """ - returns the list containing all the possible - combinations a string(target) can be constructed from - the given list of substrings(word_bank) + returns the list containing all the possible + combinations a string(`target`) can be constructed from + the given list of substrings(`word_bank`) + >>> all_construct("hello", ["he", "l", "o"]) [['he', 'l', 'l', 'o']] >>> all_construct("purple",["purp","p","ur","le","purpl"]) diff --git a/dynamic_programming/combination_sum_iv.py b/dynamic_programming/combination_sum_iv.py index 113c06a27..ed8dcd88e 100644 --- a/dynamic_programming/combination_sum_iv.py +++ b/dynamic_programming/combination_sum_iv.py @@ -1,24 +1,25 @@ """ Question: -You are given an array of distinct integers and you have to tell how many -different ways of selecting the elements from the array are there such that -the sum of chosen elements is equal to the target number tar. + You are given an array of distinct integers and you have to tell how many + different ways of selecting the elements from the array are there such that + the sum of chosen elements is equal to the target number tar. Example Input: -N = 3 -target = 5 -array = [1, 2, 5] + * N = 3 + * target = 5 + * array = [1, 2, 5] Output: -9 + 9 Approach: -The basic idea is to go over recursively to find the way such that the sum -of chosen elements is “tar”. For every element, we have two choices - 1. Include the element in our set of chosen elements. - 2. Don't include the element in our set of chosen elements. + The basic idea is to go over recursively to find the way such that the sum + of chosen elements is `target`. For every element, we have two choices + + 1. Include the element in our set of chosen elements. + 2. Don't include the element in our set of chosen elements. """ diff --git a/dynamic_programming/fizz_buzz.py b/dynamic_programming/fizz_buzz.py index e29116437..0cb488978 100644 --- a/dynamic_programming/fizz_buzz.py +++ b/dynamic_programming/fizz_buzz.py @@ -3,11 +3,12 @@ def fizz_buzz(number: int, iterations: int) -> str: """ - Plays FizzBuzz. - Prints Fizz if number is a multiple of 3. - Prints Buzz if its a multiple of 5. - Prints FizzBuzz if its a multiple of both 3 and 5 or 15. - Else Prints The Number Itself. + | Plays FizzBuzz. + | Prints Fizz if number is a multiple of ``3``. + | Prints Buzz if its a multiple of ``5``. + | Prints FizzBuzz if its a multiple of both ``3`` and ``5`` or ``15``. + | Else Prints The Number Itself. + >>> fizz_buzz(1,7) '1 2 Fizz 4 Buzz Fizz 7 ' >>> fizz_buzz(1,0) diff --git a/dynamic_programming/knapsack.py b/dynamic_programming/knapsack.py index 489b5ada4..28c5b19db 100644 --- a/dynamic_programming/knapsack.py +++ b/dynamic_programming/knapsack.py @@ -11,7 +11,7 @@ def mf_knapsack(i, wt, val, j): """ This code involves the concept of memory functions. Here we solve the subproblems which are needed unlike the below example - F is a 2D array with -1s filled up + F is a 2D array with ``-1`` s filled up """ global f # a global dp table for knapsack if f[i][j] < 0: @@ -45,22 +45,24 @@ def knapsack_with_example_solution(w: int, wt: list, val: list): the several possible optimal subsets. Parameters - --------- + ---------- - W: int, the total maximum weight for the given knapsack problem. - wt: list, the vector of weights for all items where wt[i] is the weight - of the i-th item. - val: list, the vector of values for all items where val[i] is the value - of the i-th item + * `w`: int, the total maximum weight for the given knapsack problem. + * `wt`: list, the vector of weights for all items where ``wt[i]`` is the weight + of the ``i``-th item. + * `val`: list, the vector of values for all items where ``val[i]`` is the value + of the ``i``-th item Returns ------- - optimal_val: float, the optimal value for the given knapsack problem - example_optional_set: set, the indices of one of the optimal subsets - which gave rise to the optimal value. + + * `optimal_val`: float, the optimal value for the given knapsack problem + * `example_optional_set`: set, the indices of one of the optimal subsets + which gave rise to the optimal value. Examples - ------- + -------- + >>> knapsack_with_example_solution(10, [1, 3, 5, 2], [10, 20, 100, 22]) (142, {2, 3, 4}) >>> knapsack_with_example_solution(6, [4, 3, 2, 3], [3, 2, 4, 4]) @@ -104,19 +106,19 @@ def _construct_solution(dp: list, wt: list, i: int, j: int, optimal_set: set): a filled DP table and the vector of weights Parameters - --------- + ---------- - dp: list of list, the table of a solved integer weight dynamic programming problem - - wt: list or tuple, the vector of weights of the items - i: int, the index of the item under consideration - j: int, the current possible maximum weight - optimal_set: set, the optimal subset so far. This gets modified by the function. + * `dp`: list of list, the table of a solved integer weight dynamic programming + problem + * `wt`: list or tuple, the vector of weights of the items + * `i`: int, the index of the item under consideration + * `j`: int, the current possible maximum weight + * `optimal_set`: set, the optimal subset so far. This gets modified by the function. Returns ------- - None + ``None`` """ # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). diff --git a/dynamic_programming/longest_common_substring.py b/dynamic_programming/longest_common_substring.py index e2f944a5e..ea5233eb2 100644 --- a/dynamic_programming/longest_common_substring.py +++ b/dynamic_programming/longest_common_substring.py @@ -1,15 +1,19 @@ """ -Longest Common Substring Problem Statement: Given two sequences, find the -longest common substring present in both of them. A substring is -necessarily continuous. -Example: "abcdef" and "xabded" have two longest common substrings, "ab" or "de". -Therefore, algorithm should return any one of them. +Longest Common Substring Problem Statement: + Given two sequences, find the + longest common substring present in both of them. A substring is + necessarily continuous. + +Example: + ``abcdef`` and ``xabded`` have two longest common substrings, ``ab`` or ``de``. + Therefore, algorithm should return any one of them. """ def longest_common_substring(text1: str, text2: str) -> str: """ Finds the longest common substring between two strings. + >>> longest_common_substring("", "") '' >>> longest_common_substring("a","") diff --git a/dynamic_programming/longest_increasing_subsequence.py b/dynamic_programming/longest_increasing_subsequence.py index 2a78e2e7a..d839757f6 100644 --- a/dynamic_programming/longest_increasing_subsequence.py +++ b/dynamic_programming/longest_increasing_subsequence.py @@ -4,11 +4,13 @@ Author : Mehdi ALAOUI This is a pure Python implementation of Dynamic Programming solution to the longest increasing subsequence of a given sequence. -The problem is : -Given an array, to find the longest and increasing sub-array in that given array and -return it. -Example: [10, 22, 9, 33, 21, 50, 41, 60, 80] as input will return - [10, 22, 33, 41, 60, 80] as output +The problem is: + Given an array, to find the longest and increasing sub-array in that given array and + return it. + +Example: + ``[10, 22, 9, 33, 21, 50, 41, 60, 80]`` as input will return + ``[10, 22, 33, 41, 60, 80]`` as output """ from __future__ import annotations @@ -17,6 +19,7 @@ from __future__ import annotations def longest_subsequence(array: list[int]) -> list[int]: # This function is recursive """ Some examples + >>> longest_subsequence([10, 22, 9, 33, 21, 50, 41, 60, 80]) [10, 22, 33, 41, 60, 80] >>> longest_subsequence([4, 8, 7, 5, 1, 12, 2, 3, 9]) diff --git a/dynamic_programming/matrix_chain_multiplication.py b/dynamic_programming/matrix_chain_multiplication.py index da6e525ce..10e136b9f 100644 --- a/dynamic_programming/matrix_chain_multiplication.py +++ b/dynamic_programming/matrix_chain_multiplication.py @@ -1,42 +1,48 @@ """ -Find the minimum number of multiplications needed to multiply chain of matrices. -Reference: https://www.geeksforgeeks.org/matrix-chain-multiplication-dp-8/ +| Find the minimum number of multiplications needed to multiply chain of matrices. +| Reference: https://www.geeksforgeeks.org/matrix-chain-multiplication-dp-8/ -The algorithm has interesting real-world applications. Example: -1. Image transformations in Computer Graphics as images are composed of matrix. -2. Solve complex polynomial equations in the field of algebra using least processing - power. -3. Calculate overall impact of macroeconomic decisions as economic equations involve a - number of variables. -4. Self-driving car navigation can be made more accurate as matrix multiplication can - accurately determine position and orientation of obstacles in short time. +The algorithm has interesting real-world applications. -Python doctests can be run with the following command: -python -m doctest -v matrix_chain_multiply.py +Example: + 1. Image transformations in Computer Graphics as images are composed of matrix. + 2. Solve complex polynomial equations in the field of algebra using least processing + power. + 3. Calculate overall impact of macroeconomic decisions as economic equations involve a + number of variables. + 4. Self-driving car navigation can be made more accurate as matrix multiplication can + accurately determine position and orientation of obstacles in short time. -Given a sequence arr[] that represents chain of 2D matrices such that the dimension of -the ith matrix is arr[i-1]*arr[i]. -So suppose arr = [40, 20, 30, 10, 30] means we have 4 matrices of dimensions -40*20, 20*30, 30*10 and 10*30. +Python doctests can be run with the following command:: -matrix_chain_multiply() returns an integer denoting minimum number of multiplications to -multiply the chain. + python -m doctest -v matrix_chain_multiply.py + +Given a sequence ``arr[]`` that represents chain of 2D matrices such that the dimension +of the ``i`` th matrix is ``arr[i-1]*arr[i]``. +So suppose ``arr = [40, 20, 30, 10, 30]`` means we have ``4`` matrices of dimensions +``40*20``, ``20*30``, ``30*10`` and ``10*30``. + +``matrix_chain_multiply()`` returns an integer denoting minimum number of +multiplications to multiply the chain. We do not need to perform actual multiplication here. We only need to decide the order in which to perform the multiplication. Hints: -1. Number of multiplications (ie cost) to multiply 2 matrices -of size m*p and p*n is m*p*n. -2. Cost of matrix multiplication is associative ie (M1*M2)*M3 != M1*(M2*M3) -3. Matrix multiplication is not commutative. So, M1*M2 does not mean M2*M1 can be done. -4. To determine the required order, we can try different combinations. + 1. Number of multiplications (ie cost) to multiply ``2`` matrices + of size ``m*p`` and ``p*n`` is ``m*p*n``. + 2. Cost of matrix multiplication is not associative ie ``(M1*M2)*M3 != M1*(M2*M3)`` + 3. Matrix multiplication is not commutative. So, ``M1*M2`` does not mean ``M2*M1`` + can be done. + 4. To determine the required order, we can try different combinations. + So, this problem has overlapping sub-problems and can be solved using recursion. We use Dynamic Programming for optimal time complexity. Example input: -arr = [40, 20, 30, 10, 30] -output: 26000 + ``arr = [40, 20, 30, 10, 30]`` +output: + ``26000`` """ from collections.abc import Iterator @@ -50,25 +56,25 @@ def matrix_chain_multiply(arr: list[int]) -> int: Find the minimum number of multiplcations required to multiply the chain of matrices Args: - arr: The input array of integers. + `arr`: The input array of integers. Returns: Minimum number of multiplications needed to multiply the chain Examples: - >>> matrix_chain_multiply([1, 2, 3, 4, 3]) - 30 - >>> matrix_chain_multiply([10]) - 0 - >>> matrix_chain_multiply([10, 20]) - 0 - >>> matrix_chain_multiply([19, 2, 19]) - 722 - >>> matrix_chain_multiply(list(range(1, 100))) - 323398 - # >>> matrix_chain_multiply(list(range(1, 251))) - # 2626798 + >>> matrix_chain_multiply([1, 2, 3, 4, 3]) + 30 + >>> matrix_chain_multiply([10]) + 0 + >>> matrix_chain_multiply([10, 20]) + 0 + >>> matrix_chain_multiply([19, 2, 19]) + 722 + >>> matrix_chain_multiply(list(range(1, 100))) + 323398 + >>> # matrix_chain_multiply(list(range(1, 251))) + # 2626798 """ if len(arr) < 2: return 0 @@ -93,8 +99,10 @@ def matrix_chain_multiply(arr: list[int]) -> int: def matrix_chain_order(dims: list[int]) -> int: """ Source: https://en.wikipedia.org/wiki/Matrix_chain_multiplication + The dynamic programming solution is faster than cached the recursive solution and can handle larger inputs. + >>> matrix_chain_order([1, 2, 3, 4, 3]) 30 >>> matrix_chain_order([10]) @@ -105,8 +113,7 @@ def matrix_chain_order(dims: list[int]) -> int: 722 >>> matrix_chain_order(list(range(1, 100))) 323398 - - # >>> matrix_chain_order(list(range(1, 251))) # Max before RecursionError is raised + >>> # matrix_chain_order(list(range(1, 251))) # Max before RecursionError is raised # 2626798 """ diff --git a/dynamic_programming/max_product_subarray.py b/dynamic_programming/max_product_subarray.py index 425859bc0..6f4f38e38 100644 --- a/dynamic_programming/max_product_subarray.py +++ b/dynamic_programming/max_product_subarray.py @@ -1,9 +1,10 @@ def max_product_subarray(numbers: list[int]) -> int: """ Returns the maximum product that can be obtained by multiplying a - contiguous subarray of the given integer list `nums`. + contiguous subarray of the given integer list `numbers`. Example: + >>> max_product_subarray([2, 3, -2, 4]) 6 >>> max_product_subarray((-2, 0, -1)) diff --git a/dynamic_programming/minimum_squares_to_represent_a_number.py b/dynamic_programming/minimum_squares_to_represent_a_number.py index bf5849f5b..98c0602fa 100644 --- a/dynamic_programming/minimum_squares_to_represent_a_number.py +++ b/dynamic_programming/minimum_squares_to_represent_a_number.py @@ -5,6 +5,7 @@ import sys def minimum_squares_to_represent_a_number(number: int) -> int: """ Count the number of minimum squares to represent a number + >>> minimum_squares_to_represent_a_number(25) 1 >>> minimum_squares_to_represent_a_number(37) diff --git a/dynamic_programming/regex_match.py b/dynamic_programming/regex_match.py index 200a88283..e94d82093 100644 --- a/dynamic_programming/regex_match.py +++ b/dynamic_programming/regex_match.py @@ -1,23 +1,25 @@ """ Regex matching check if a text matches pattern or not. Pattern: - '.' Matches any single character. - '*' Matches zero or more of the preceding element. + + 1. ``.`` Matches any single character. + 2. ``*`` Matches zero or more of the preceding element. + More info: https://medium.com/trick-the-interviwer/regular-expression-matching-9972eb74c03 """ def recursive_match(text: str, pattern: str) -> bool: - """ + r""" Recursive matching algorithm. - Time complexity: O(2 ^ (|text| + |pattern|)) - Space complexity: Recursion depth is O(|text| + |pattern|). + | Time complexity: O(2^(\|text\| + \|pattern\|)) + | Space complexity: Recursion depth is O(\|text\| + \|pattern\|). :param text: Text to match. :param pattern: Pattern to match. - :return: True if text matches pattern, False otherwise. + :return: ``True`` if `text` matches `pattern`, ``False`` otherwise. >>> recursive_match('abc', 'a.c') True @@ -48,15 +50,15 @@ def recursive_match(text: str, pattern: str) -> bool: def dp_match(text: str, pattern: str) -> bool: - """ + r""" Dynamic programming matching algorithm. - Time complexity: O(|text| * |pattern|) - Space complexity: O(|text| * |pattern|) + | Time complexity: O(\|text\| * \|pattern\|) + | Space complexity: O(\|text\| * \|pattern\|) :param text: Text to match. :param pattern: Pattern to match. - :return: True if text matches pattern, False otherwise. + :return: ``True`` if `text` matches `pattern`, ``False`` otherwise. >>> dp_match('abc', 'a.c') True diff --git a/dynamic_programming/rod_cutting.py b/dynamic_programming/rod_cutting.py index f80fa440a..d12c759dc 100644 --- a/dynamic_programming/rod_cutting.py +++ b/dynamic_programming/rod_cutting.py @@ -1,7 +1,7 @@ """ This module provides two implementations for the rod-cutting problem: -1. A naive recursive implementation which has an exponential runtime -2. Two dynamic programming implementations which have quadratic runtime + 1. A naive recursive implementation which has an exponential runtime + 2. Two dynamic programming implementations which have quadratic runtime The rod-cutting problem is the problem of finding the maximum possible revenue obtainable from a rod of length ``n`` given a list of prices for each integral piece @@ -20,18 +20,21 @@ def naive_cut_rod_recursive(n: int, prices: list): Runtime: O(2^n) Arguments - ------- - n: int, the length of the rod - prices: list, the prices for each piece of rod. ``p[i-i]`` is the - price for a rod of length ``i`` + --------- + + * `n`: int, the length of the rod + * `prices`: list, the prices for each piece of rod. ``p[i-i]`` is the + price for a rod of length ``i`` Returns ------- - The maximum revenue obtainable for a rod of length n given the list of prices + + The maximum revenue obtainable for a rod of length `n` given the list of prices for each piece. Examples -------- + >>> naive_cut_rod_recursive(4, [1, 5, 8, 9]) 10 >>> naive_cut_rod_recursive(10, [1, 5, 8, 9, 10, 17, 17, 20, 24, 30]) @@ -54,28 +57,30 @@ def top_down_cut_rod(n: int, prices: list): """ Constructs a top-down dynamic programming solution for the rod-cutting problem via memoization. This function serves as a wrapper for - _top_down_cut_rod_recursive + ``_top_down_cut_rod_recursive`` Runtime: O(n^2) Arguments - -------- - n: int, the length of the rod - prices: list, the prices for each piece of rod. ``p[i-i]`` is the - price for a rod of length ``i`` + --------- - Note - ---- - For convenience and because Python's lists using 0-indexing, length(max_rev) = - n + 1, to accommodate for the revenue obtainable from a rod of length 0. + * `n`: int, the length of the rod + * `prices`: list, the prices for each piece of rod. ``p[i-i]`` is the + price for a rod of length ``i`` + + .. note:: + For convenience and because Python's lists using ``0``-indexing, ``length(max_rev) + = n + 1``, to accommodate for the revenue obtainable from a rod of length ``0``. Returns ------- - The maximum revenue obtainable for a rod of length n given the list of prices + + The maximum revenue obtainable for a rod of length `n` given the list of prices for each piece. Examples - ------- + -------- + >>> top_down_cut_rod(4, [1, 5, 8, 9]) 10 >>> top_down_cut_rod(10, [1, 5, 8, 9, 10, 17, 17, 20, 24, 30]) @@ -94,16 +99,18 @@ def _top_down_cut_rod_recursive(n: int, prices: list, max_rev: list): Runtime: O(n^2) Arguments - -------- - n: int, the length of the rod - prices: list, the prices for each piece of rod. ``p[i-i]`` is the - price for a rod of length ``i`` - max_rev: list, the computed maximum revenue for a piece of rod. - ``max_rev[i]`` is the maximum revenue obtainable for a rod of length ``i`` + --------- + + * `n`: int, the length of the rod + * `prices`: list, the prices for each piece of rod. ``p[i-i]`` is the + price for a rod of length ``i`` + * `max_rev`: list, the computed maximum revenue for a piece of rod. + ``max_rev[i]`` is the maximum revenue obtainable for a rod of length ``i`` Returns ------- - The maximum revenue obtainable for a rod of length n given the list of prices + + The maximum revenue obtainable for a rod of length `n` given the list of prices for each piece. """ if max_rev[n] >= 0: @@ -130,18 +137,21 @@ def bottom_up_cut_rod(n: int, prices: list): Runtime: O(n^2) Arguments - ---------- - n: int, the maximum length of the rod. - prices: list, the prices for each piece of rod. ``p[i-i]`` is the - price for a rod of length ``i`` + --------- + + * `n`: int, the maximum length of the rod. + * `prices`: list, the prices for each piece of rod. ``p[i-i]`` is the + price for a rod of length ``i`` Returns ------- - The maximum revenue obtainable from cutting a rod of length n given + + The maximum revenue obtainable from cutting a rod of length `n` given the prices for each piece of rod p. Examples - ------- + -------- + >>> bottom_up_cut_rod(4, [1, 5, 8, 9]) 10 >>> bottom_up_cut_rod(10, [1, 5, 8, 9, 10, 17, 17, 20, 24, 30]) @@ -168,13 +178,12 @@ def _enforce_args(n: int, prices: list): """ Basic checks on the arguments to the rod-cutting algorithms - n: int, the length of the rod - prices: list, the price list for each piece of rod. + * `n`: int, the length of the rod + * `prices`: list, the price list for each piece of rod. - Throws ValueError: - - if n is negative or there are fewer items in the price list than the length of - the rod + Throws ``ValueError``: + if `n` is negative or there are fewer items in the price list than the length of + the rod """ if n < 0: msg = f"n must be greater than or equal to 0. Got n = {n}" diff --git a/dynamic_programming/subset_generation.py b/dynamic_programming/subset_generation.py index d490bca73..08daaac6f 100644 --- a/dynamic_programming/subset_generation.py +++ b/dynamic_programming/subset_generation.py @@ -1,38 +1,41 @@ def subset_combinations(elements: list[int], n: int) -> list: """ Compute n-element combinations from a given list using dynamic programming. + Args: - elements: The list of elements from which combinations will be generated. - n: The number of elements in each combination. + * `elements`: The list of elements from which combinations will be generated. + * `n`: The number of elements in each combination. + Returns: - A list of tuples, each representing a combination of n elements. - >>> subset_combinations(elements=[10, 20, 30, 40], n=2) - [(10, 20), (10, 30), (10, 40), (20, 30), (20, 40), (30, 40)] - >>> subset_combinations(elements=[1, 2, 3], n=1) - [(1,), (2,), (3,)] - >>> subset_combinations(elements=[1, 2, 3], n=3) - [(1, 2, 3)] - >>> subset_combinations(elements=[42], n=1) - [(42,)] - >>> subset_combinations(elements=[6, 7, 8, 9], n=4) - [(6, 7, 8, 9)] - >>> subset_combinations(elements=[10, 20, 30, 40, 50], n=0) - [()] - >>> subset_combinations(elements=[1, 2, 3, 4], n=2) - [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] - >>> subset_combinations(elements=[1, 'apple', 3.14], n=2) - [(1, 'apple'), (1, 3.14), ('apple', 3.14)] - >>> subset_combinations(elements=['single'], n=0) - [()] - >>> subset_combinations(elements=[], n=9) - [] - >>> from itertools import combinations - >>> all(subset_combinations(items, n) == list(combinations(items, n)) - ... for items, n in ( - ... ([10, 20, 30, 40], 2), ([1, 2, 3], 1), ([1, 2, 3], 3), ([42], 1), - ... ([6, 7, 8, 9], 4), ([10, 20, 30, 40, 50], 1), ([1, 2, 3, 4], 2), - ... ([1, 'apple', 3.14], 2), (['single'], 0), ([], 9))) - True + A list of tuples, each representing a combination of `n` elements. + + >>> subset_combinations(elements=[10, 20, 30, 40], n=2) + [(10, 20), (10, 30), (10, 40), (20, 30), (20, 40), (30, 40)] + >>> subset_combinations(elements=[1, 2, 3], n=1) + [(1,), (2,), (3,)] + >>> subset_combinations(elements=[1, 2, 3], n=3) + [(1, 2, 3)] + >>> subset_combinations(elements=[42], n=1) + [(42,)] + >>> subset_combinations(elements=[6, 7, 8, 9], n=4) + [(6, 7, 8, 9)] + >>> subset_combinations(elements=[10, 20, 30, 40, 50], n=0) + [()] + >>> subset_combinations(elements=[1, 2, 3, 4], n=2) + [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] + >>> subset_combinations(elements=[1, 'apple', 3.14], n=2) + [(1, 'apple'), (1, 3.14), ('apple', 3.14)] + >>> subset_combinations(elements=['single'], n=0) + [()] + >>> subset_combinations(elements=[], n=9) + [] + >>> from itertools import combinations + >>> all(subset_combinations(items, n) == list(combinations(items, n)) + ... for items, n in ( + ... ([10, 20, 30, 40], 2), ([1, 2, 3], 1), ([1, 2, 3], 3), ([42], 1), + ... ([6, 7, 8, 9], 4), ([10, 20, 30, 40, 50], 1), ([1, 2, 3, 4], 2), + ... ([1, 'apple', 3.14], 2), (['single'], 0), ([], 9))) + True """ r = len(elements) if n > r: diff --git a/dynamic_programming/viterbi.py b/dynamic_programming/viterbi.py index 764d45dc2..5b78fa9e4 100644 --- a/dynamic_programming/viterbi.py +++ b/dynamic_programming/viterbi.py @@ -9,119 +9,102 @@ def viterbi( emission_probabilities: dict, ) -> list: """ - Viterbi Algorithm, to find the most likely path of - states from the start and the expected output. - https://en.wikipedia.org/wiki/Viterbi_algorithm - sdafads - Wikipedia example - >>> observations = ["normal", "cold", "dizzy"] - >>> states = ["Healthy", "Fever"] - >>> start_p = {"Healthy": 0.6, "Fever": 0.4} - >>> trans_p = { - ... "Healthy": {"Healthy": 0.7, "Fever": 0.3}, - ... "Fever": {"Healthy": 0.4, "Fever": 0.6}, - ... } - >>> emit_p = { - ... "Healthy": {"normal": 0.5, "cold": 0.4, "dizzy": 0.1}, - ... "Fever": {"normal": 0.1, "cold": 0.3, "dizzy": 0.6}, - ... } - >>> viterbi(observations, states, start_p, trans_p, emit_p) - ['Healthy', 'Healthy', 'Fever'] + Viterbi Algorithm, to find the most likely path of + states from the start and the expected output. - >>> viterbi((), states, start_p, trans_p, emit_p) - Traceback (most recent call last): - ... - ValueError: There's an empty parameter + https://en.wikipedia.org/wiki/Viterbi_algorithm - >>> viterbi(observations, (), start_p, trans_p, emit_p) - Traceback (most recent call last): - ... - ValueError: There's an empty parameter + Wikipedia example - >>> viterbi(observations, states, {}, trans_p, emit_p) - Traceback (most recent call last): - ... - ValueError: There's an empty parameter - - >>> viterbi(observations, states, start_p, {}, emit_p) - Traceback (most recent call last): - ... - ValueError: There's an empty parameter - - >>> viterbi(observations, states, start_p, trans_p, {}) - Traceback (most recent call last): - ... - ValueError: There's an empty parameter - - >>> viterbi("invalid", states, start_p, trans_p, emit_p) - Traceback (most recent call last): - ... - ValueError: observations_space must be a list - - >>> viterbi(["valid", 123], states, start_p, trans_p, emit_p) - Traceback (most recent call last): - ... - ValueError: observations_space must be a list of strings - - >>> viterbi(observations, "invalid", start_p, trans_p, emit_p) - Traceback (most recent call last): - ... - ValueError: states_space must be a list - - >>> viterbi(observations, ["valid", 123], start_p, trans_p, emit_p) - Traceback (most recent call last): - ... - ValueError: states_space must be a list of strings - - >>> viterbi(observations, states, "invalid", trans_p, emit_p) - Traceback (most recent call last): - ... - ValueError: initial_probabilities must be a dict - - >>> viterbi(observations, states, {2:2}, trans_p, emit_p) - Traceback (most recent call last): - ... - ValueError: initial_probabilities all keys must be strings - - >>> viterbi(observations, states, {"a":2}, trans_p, emit_p) - Traceback (most recent call last): - ... - ValueError: initial_probabilities all values must be float - - >>> viterbi(observations, states, start_p, "invalid", emit_p) - Traceback (most recent call last): - ... - ValueError: transition_probabilities must be a dict - - >>> viterbi(observations, states, start_p, {"a":2}, emit_p) - Traceback (most recent call last): - ... - ValueError: transition_probabilities all values must be dict - - >>> viterbi(observations, states, start_p, {2:{2:2}}, emit_p) - Traceback (most recent call last): - ... - ValueError: transition_probabilities all keys must be strings - - >>> viterbi(observations, states, start_p, {"a":{2:2}}, emit_p) - Traceback (most recent call last): - ... - ValueError: transition_probabilities all keys must be strings - - >>> viterbi(observations, states, start_p, {"a":{"b":2}}, emit_p) - Traceback (most recent call last): - ... - ValueError: transition_probabilities nested dictionary all values must be float - - >>> viterbi(observations, states, start_p, trans_p, "invalid") - Traceback (most recent call last): - ... - ValueError: emission_probabilities must be a dict - - >>> viterbi(observations, states, start_p, trans_p, None) - Traceback (most recent call last): - ... - ValueError: There's an empty parameter + >>> observations = ["normal", "cold", "dizzy"] + >>> states = ["Healthy", "Fever"] + >>> start_p = {"Healthy": 0.6, "Fever": 0.4} + >>> trans_p = { + ... "Healthy": {"Healthy": 0.7, "Fever": 0.3}, + ... "Fever": {"Healthy": 0.4, "Fever": 0.6}, + ... } + >>> emit_p = { + ... "Healthy": {"normal": 0.5, "cold": 0.4, "dizzy": 0.1}, + ... "Fever": {"normal": 0.1, "cold": 0.3, "dizzy": 0.6}, + ... } + >>> viterbi(observations, states, start_p, trans_p, emit_p) + ['Healthy', 'Healthy', 'Fever'] + >>> viterbi((), states, start_p, trans_p, emit_p) + Traceback (most recent call last): + ... + ValueError: There's an empty parameter + >>> viterbi(observations, (), start_p, trans_p, emit_p) + Traceback (most recent call last): + ... + ValueError: There's an empty parameter + >>> viterbi(observations, states, {}, trans_p, emit_p) + Traceback (most recent call last): + ... + ValueError: There's an empty parameter + >>> viterbi(observations, states, start_p, {}, emit_p) + Traceback (most recent call last): + ... + ValueError: There's an empty parameter + >>> viterbi(observations, states, start_p, trans_p, {}) + Traceback (most recent call last): + ... + ValueError: There's an empty parameter + >>> viterbi("invalid", states, start_p, trans_p, emit_p) + Traceback (most recent call last): + ... + ValueError: observations_space must be a list + >>> viterbi(["valid", 123], states, start_p, trans_p, emit_p) + Traceback (most recent call last): + ... + ValueError: observations_space must be a list of strings + >>> viterbi(observations, "invalid", start_p, trans_p, emit_p) + Traceback (most recent call last): + ... + ValueError: states_space must be a list + >>> viterbi(observations, ["valid", 123], start_p, trans_p, emit_p) + Traceback (most recent call last): + ... + ValueError: states_space must be a list of strings + >>> viterbi(observations, states, "invalid", trans_p, emit_p) + Traceback (most recent call last): + ... + ValueError: initial_probabilities must be a dict + >>> viterbi(observations, states, {2:2}, trans_p, emit_p) + Traceback (most recent call last): + ... + ValueError: initial_probabilities all keys must be strings + >>> viterbi(observations, states, {"a":2}, trans_p, emit_p) + Traceback (most recent call last): + ... + ValueError: initial_probabilities all values must be float + >>> viterbi(observations, states, start_p, "invalid", emit_p) + Traceback (most recent call last): + ... + ValueError: transition_probabilities must be a dict + >>> viterbi(observations, states, start_p, {"a":2}, emit_p) + Traceback (most recent call last): + ... + ValueError: transition_probabilities all values must be dict + >>> viterbi(observations, states, start_p, {2:{2:2}}, emit_p) + Traceback (most recent call last): + ... + ValueError: transition_probabilities all keys must be strings + >>> viterbi(observations, states, start_p, {"a":{2:2}}, emit_p) + Traceback (most recent call last): + ... + ValueError: transition_probabilities all keys must be strings + >>> viterbi(observations, states, start_p, {"a":{"b":2}}, emit_p) + Traceback (most recent call last): + ... + ValueError: transition_probabilities nested dictionary all values must be float + >>> viterbi(observations, states, start_p, trans_p, "invalid") + Traceback (most recent call last): + ... + ValueError: emission_probabilities must be a dict + >>> viterbi(observations, states, start_p, trans_p, None) + Traceback (most recent call last): + ... + ValueError: There's an empty parameter """ _validation( @@ -213,7 +196,6 @@ def _validation( ... "Fever": {"normal": 0.1, "cold": 0.3, "dizzy": 0.6}, ... } >>> _validation(observations, states, start_p, trans_p, emit_p) - >>> _validation([], states, start_p, trans_p, emit_p) Traceback (most recent call last): ... @@ -242,7 +224,6 @@ def _validate_not_empty( """ >>> _validate_not_empty(["a"], ["b"], {"c":0.5}, ... {"d": {"e": 0.6}}, {"f": {"g": 0.7}}) - >>> _validate_not_empty(["a"], ["b"], {"c":0.5}, {}, {"f": {"g": 0.7}}) Traceback (most recent call last): ... @@ -267,12 +248,10 @@ def _validate_not_empty( def _validate_lists(observations_space: Any, states_space: Any) -> None: """ >>> _validate_lists(["a"], ["b"]) - >>> _validate_lists(1234, ["b"]) Traceback (most recent call last): ... ValueError: observations_space must be a list - >>> _validate_lists(["a"], [3]) Traceback (most recent call last): ... @@ -285,7 +264,6 @@ def _validate_lists(observations_space: Any, states_space: Any) -> None: def _validate_list(_object: Any, var_name: str) -> None: """ >>> _validate_list(["a"], "mock_name") - >>> _validate_list("a", "mock_name") Traceback (most recent call last): ... @@ -294,7 +272,6 @@ def _validate_list(_object: Any, var_name: str) -> None: Traceback (most recent call last): ... ValueError: mock_name must be a list of strings - """ if not isinstance(_object, list): msg = f"{var_name} must be a list" @@ -313,7 +290,6 @@ def _validate_dicts( ) -> None: """ >>> _validate_dicts({"c":0.5}, {"d": {"e": 0.6}}, {"f": {"g": 0.7}}) - >>> _validate_dicts("invalid", {"d": {"e": 0.6}}, {"f": {"g": 0.7}}) Traceback (most recent call last): ... @@ -339,7 +315,6 @@ def _validate_dicts( def _validate_nested_dict(_object: Any, var_name: str) -> None: """ >>> _validate_nested_dict({"a":{"b": 0.5}}, "mock_name") - >>> _validate_nested_dict("invalid", "mock_name") Traceback (most recent call last): ... @@ -367,7 +342,6 @@ def _validate_dict( ) -> None: """ >>> _validate_dict({"b": 0.5}, "mock_name", float) - >>> _validate_dict("invalid", "mock_name", float) Traceback (most recent call last): ...