Add solution for Project Euler problem 107 (#4066)

* Added solution for Project Euler problem 107

* Doctests and better variable names

* Type hints

* Small edits

* Forward reference for typing hint

* updating DIRECTORY.md

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
fpringle 2020-12-28 08:51:02 +01:00 committed by GitHub
parent 00e279ea44
commit 80f5213df5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 178 additions and 0 deletions

View File

@ -499,6 +499,7 @@
* [Minimum Cut](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/minimum_cut.py)
## Neural Network
* [2 Hidden Layers Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/2_hidden_layers_neural_network.py)
* [Back Propagation Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/back_propagation_neural_network.py)
* [Convolution Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/convolution_neural_network.py)
* [Perceptron](https://github.com/TheAlgorithms/Python/blob/master/neural_network/perceptron.py)
@ -748,6 +749,8 @@
* [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_101/sol1.py)
* Problem 102
* [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_102/sol1.py)
* Problem 107
* [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_107/sol1.py)
* Problem 112
* [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_112/sol1.py)
* Problem 113

View File

View File

@ -0,0 +1,40 @@
-,-,-,427,668,495,377,678,-,177,-,-,870,-,869,624,300,609,131,-,251,-,-,-,856,221,514,-,591,762,182,56,-,884,412,273,636,-,-,774
-,-,262,-,-,508,472,799,-,956,578,363,940,143,-,162,122,910,-,729,802,941,922,573,531,539,667,607,-,920,-,-,315,649,937,-,185,102,636,289
-,262,-,-,926,-,958,158,647,47,621,264,81,-,402,813,649,386,252,391,264,637,349,-,-,-,108,-,727,225,578,699,-,898,294,-,575,168,432,833
427,-,-,-,366,-,-,635,-,32,962,468,893,854,718,427,448,916,258,-,760,909,529,311,404,-,-,588,680,875,-,615,-,409,758,221,-,-,76,257
668,-,926,366,-,-,-,250,268,-,503,944,-,677,-,727,793,457,981,191,-,-,-,351,969,925,987,328,282,589,-,873,477,-,-,19,450,-,-,-
495,508,-,-,-,-,-,765,711,819,305,302,926,-,-,582,-,861,-,683,293,-,-,66,-,27,-,-,290,-,786,-,554,817,33,-,54,506,386,381
377,472,958,-,-,-,-,-,-,120,42,-,134,219,457,639,538,374,-,-,-,966,-,-,-,-,-,449,120,797,358,232,550,-,305,997,662,744,686,239
678,799,158,635,250,765,-,-,-,35,-,106,385,652,160,-,890,812,605,953,-,-,-,79,-,712,613,312,452,-,978,900,-,901,-,-,225,533,770,722
-,-,647,-,268,711,-,-,-,283,-,172,-,663,236,36,403,286,986,-,-,810,761,574,53,793,-,-,777,330,936,883,286,-,174,-,-,-,828,711
177,956,47,32,-,819,120,35,283,-,50,-,565,36,767,684,344,489,565,-,-,103,810,463,733,665,494,644,863,25,385,-,342,470,-,-,-,730,582,468
-,578,621,962,503,305,42,-,-,50,-,155,519,-,-,256,990,801,154,53,474,650,402,-,-,-,966,-,-,406,989,772,932,7,-,823,391,-,-,933
-,363,264,468,944,302,-,106,172,-,155,-,-,-,380,438,-,41,266,-,-,104,867,609,-,270,861,-,-,165,-,675,250,686,995,366,191,-,433,-
870,940,81,893,-,926,134,385,-,565,519,-,-,313,851,-,-,-,248,220,-,826,359,829,-,234,198,145,409,68,359,-,814,218,186,-,-,929,203,-
-,143,-,854,677,-,219,652,663,36,-,-,313,-,132,-,433,598,-,-,168,870,-,-,-,128,437,-,383,364,966,227,-,-,807,993,-,-,526,17
869,-,402,718,-,-,457,160,236,767,-,380,851,132,-,-,596,903,613,730,-,261,-,142,379,885,89,-,848,258,112,-,900,-,-,818,639,268,600,-
624,162,813,427,727,582,639,-,36,684,256,438,-,-,-,-,539,379,664,561,542,-,999,585,-,-,321,398,-,-,950,68,193,-,697,-,390,588,848,-
300,122,649,448,793,-,538,890,403,344,990,-,-,433,596,539,-,-,73,-,318,-,-,500,-,968,-,291,-,-,765,196,504,757,-,542,-,395,227,148
609,910,386,916,457,861,374,812,286,489,801,41,-,598,903,379,-,-,-,946,136,399,-,941,707,156,757,258,251,-,807,-,-,-,461,501,-,-,616,-
131,-,252,258,981,-,-,605,986,565,154,266,248,-,613,664,73,-,-,686,-,-,575,627,817,282,-,698,398,222,-,649,-,-,-,-,-,654,-,-
-,729,391,-,191,683,-,953,-,-,53,-,220,-,730,561,-,946,686,-,-,389,729,553,304,703,455,857,260,-,991,182,351,477,867,-,-,889,217,853
251,802,264,760,-,293,-,-,-,-,474,-,-,168,-,542,318,136,-,-,-,-,392,-,-,-,267,407,27,651,80,927,-,974,977,-,-,457,117,-
-,941,637,909,-,-,966,-,810,103,650,104,826,870,261,-,-,399,-,389,-,-,-,202,-,-,-,-,867,140,403,962,785,-,511,-,1,-,707,-
-,922,349,529,-,-,-,-,761,810,402,867,359,-,-,999,-,-,575,729,392,-,-,388,939,-,959,-,83,463,361,-,-,512,931,-,224,690,369,-
-,573,-,311,351,66,-,79,574,463,-,609,829,-,142,585,500,941,627,553,-,202,388,-,164,829,-,620,523,639,936,-,-,490,-,695,-,505,109,-
856,531,-,404,969,-,-,-,53,733,-,-,-,-,379,-,-,707,817,304,-,-,939,164,-,-,616,716,728,-,889,349,-,963,150,447,-,292,586,264
221,539,-,-,925,27,-,712,793,665,-,270,234,128,885,-,968,156,282,703,-,-,-,829,-,-,-,822,-,-,-,736,576,-,697,946,443,-,205,194
514,667,108,-,987,-,-,613,-,494,966,861,198,437,89,321,-,757,-,455,267,-,959,-,616,-,-,-,349,156,339,-,102,790,359,-,439,938,809,260
-,607,-,588,328,-,449,312,-,644,-,-,145,-,-,398,291,258,698,857,407,-,-,620,716,822,-,-,293,486,943,-,779,-,6,880,116,775,-,947
591,-,727,680,282,290,120,452,777,863,-,-,409,383,848,-,-,251,398,260,27,867,83,523,728,-,349,293,-,212,684,505,341,384,9,992,507,48,-,-
762,920,225,875,589,-,797,-,330,25,406,165,68,364,258,-,-,-,222,-,651,140,463,639,-,-,156,486,212,-,-,349,723,-,-,186,-,36,240,752
182,-,578,-,-,786,358,978,936,385,989,-,359,966,112,950,765,807,-,991,80,403,361,936,889,-,339,943,684,-,-,965,302,676,725,-,327,134,-,147
56,-,699,615,873,-,232,900,883,-,772,675,-,227,-,68,196,-,649,182,927,962,-,-,349,736,-,-,505,349,965,-,474,178,833,-,-,555,853,-
-,315,-,-,477,554,550,-,286,342,932,250,814,-,900,193,504,-,-,351,-,785,-,-,-,576,102,779,341,723,302,474,-,689,-,-,-,451,-,-
884,649,898,409,-,817,-,901,-,470,7,686,218,-,-,-,757,-,-,477,974,-,512,490,963,-,790,-,384,-,676,178,689,-,245,596,445,-,-,343
412,937,294,758,-,33,305,-,174,-,-,995,186,807,-,697,-,461,-,867,977,511,931,-,150,697,359,6,9,-,725,833,-,245,-,949,-,270,-,112
273,-,-,221,19,-,997,-,-,-,823,366,-,993,818,-,542,501,-,-,-,-,-,695,447,946,-,880,992,186,-,-,-,596,949,-,91,-,768,273
636,185,575,-,450,54,662,225,-,-,391,191,-,-,639,390,-,-,-,-,-,1,224,-,-,443,439,116,507,-,327,-,-,445,-,91,-,248,-,344
-,102,168,-,-,506,744,533,-,730,-,-,929,-,268,588,395,-,654,889,457,-,690,505,292,-,938,775,48,36,134,555,451,-,270,-,248,-,371,680
-,636,432,76,-,386,686,770,828,582,-,433,203,526,600,848,227,616,-,217,117,707,369,109,586,205,809,-,-,240,-,853,-,-,-,768,-,371,-,540
774,289,833,257,-,381,239,722,711,468,933,-,-,17,-,-,148,-,-,853,-,-,-,-,264,194,260,947,-,752,147,-,-,343,112,273,344,680,540,-

View File

@ -0,0 +1,128 @@
"""
The following undirected network consists of seven vertices and twelve edges
with a total weight of 243.
The same network can be represented by the matrix below.
A B C D E F G
A - 16 12 21 - - -
B 16 - - 17 20 - -
C 12 - - 28 - 31 -
D 21 17 28 - 18 19 23
E - 20 - 18 - - 11
F - - 31 19 - - 27
G - - - 23 11 27 -
However, it is possible to optimise the network by removing some edges and still
ensure that all points on the network remain connected. The network which achieves
the maximum saving is shown below. It has a weight of 93, representing a saving of
243 - 93 = 150 from the original network.
Using network.txt (right click and 'Save Link/Target As...'), a 6K text file
containing a network with forty vertices, and given in matrix form, find the maximum
saving which can be achieved by removing redundant edges whilst ensuring that the
network remains connected.
Solution:
We use Prim's algorithm to find a Minimum Spanning Tree.
Reference: https://en.wikipedia.org/wiki/Prim%27s_algorithm
"""
import os
from typing import Dict, List, Mapping, Set, Tuple
EdgeT = Tuple[int, int]
class Graph:
"""
A class representing an undirected weighted graph.
"""
def __init__(self, vertices: Set[int], edges: Mapping[EdgeT, int]) -> None:
self.vertices: Set[int] = vertices
self.edges: Dict[EdgeT, int] = {
(min(edge), max(edge)): weight for edge, weight in edges.items()
}
def add_edge(self, edge: EdgeT, weight: int) -> None:
"""
Add a new edge to the graph.
>>> graph = Graph({1, 2}, {(2, 1): 4})
>>> graph.add_edge((3, 1), 5)
>>> sorted(graph.vertices)
[1, 2, 3]
>>> sorted([(v,k) for k,v in graph.edges.items()])
[(4, (1, 2)), (5, (1, 3))]
"""
self.vertices.add(edge[0])
self.vertices.add(edge[1])
self.edges[(min(edge), max(edge))] = weight
def prims_algorithm(self) -> "Graph":
"""
Run Prim's algorithm to find the minimum spanning tree.
Reference: https://en.wikipedia.org/wiki/Prim%27s_algorithm
>>> graph = Graph({1,2,3,4},{(1,2):5, (1,3):10, (1,4):20, (2,4):30, (3,4):1})
>>> mst = graph.prims_algorithm()
>>> sorted(mst.vertices)
[1, 2, 3, 4]
>>> sorted(mst.edges)
[(1, 2), (1, 3), (3, 4)]
"""
subgraph: Graph = Graph({min(self.vertices)}, {})
min_edge: EdgeT
min_weight: int
edge: EdgeT
weight: int
while len(subgraph.vertices) < len(self.vertices):
min_weight = max(self.edges.values()) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
min_edge = edge
min_weight = weight
subgraph.add_edge(min_edge, min_weight)
return subgraph
def solution(filename: str = "p107_network.txt") -> int:
"""
Find the maximum saving which can be achieved by removing redundant edges
whilst ensuring that the network remains connected.
>>> solution("test_network.txt")
150
"""
script_dir: str = os.path.abspath(os.path.dirname(__file__))
network_file: str = os.path.join(script_dir, filename)
adjacency_matrix: List[List[str]]
edges: Dict[EdgeT, int] = dict()
data: List[str]
edge1: int
edge2: int
with open(network_file, "r") as f:
data = f.read().strip().split("\n")
adjaceny_matrix = [line.split(",") for line in data]
for edge1 in range(1, len(adjaceny_matrix)):
for edge2 in range(edge1):
if adjaceny_matrix[edge1][edge2] != "-":
edges[(edge2, edge1)] = int(adjaceny_matrix[edge1][edge2])
graph: Graph = Graph(set(range(len(adjaceny_matrix))), edges)
subgraph: Graph = graph.prims_algorithm()
initial_total: int = sum(graph.edges.values())
optimal_total: int = sum(subgraph.edges.values())
return initial_total - optimal_total
if __name__ == "__main__":
print(f"{solution() = }")

View File

@ -0,0 +1,7 @@
-,16,12,21,-,-,-
16,-,-,17,20,-,-
12,-,-,28,-,31,-
21,17,28,-,18,19,23
-,20,-,18,-,-,11
-,-,31,19,-,-,27
-,-,-,23,11,27,-