mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
Created folder for losses in Machine_Learning (#9969)
* Created folder for losses in Machine_Learning * Update binary_cross_entropy.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update mean_squared_error.py * Update binary_cross_entropy.py * Update mean_squared_error.py * Update binary_cross_entropy.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update mean_squared_error.py * Update binary_cross_entropy.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update mean_squared_error.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update binary_cross_entropy.py * Update mean_squared_error.py * Update binary_cross_entropy.py * Update mean_squared_error.py * Update machine_learning/losses/binary_cross_entropy.py Co-authored-by: Christian Clauss <cclauss@me.com> * Update machine_learning/losses/mean_squared_error.py Co-authored-by: Christian Clauss <cclauss@me.com> * Update machine_learning/losses/binary_cross_entropy.py Co-authored-by: Christian Clauss <cclauss@me.com> * Update mean_squared_error.py * Update machine_learning/losses/mean_squared_error.py Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com> * Update binary_cross_entropy.py * Update mean_squared_error.py * Update binary_cross_entropy.py * Update mean_squared_error.py * Update mean_squared_error.py * Update binary_cross_entropy.py * renamed: losses -> loss_functions * updated 2 files * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update mean_squared_error.py * Update mean_squared_error.py * Update binary_cross_entropy.py * Update mean_squared_error.py --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Christian Clauss <cclauss@me.com> Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>
This commit is contained in:
parent
6860daea60
commit
81b29066d2
59
machine_learning/loss_functions/binary_cross_entropy.py
Normal file
59
machine_learning/loss_functions/binary_cross_entropy.py
Normal file
|
@ -0,0 +1,59 @@
|
|||
"""
|
||||
Binary Cross-Entropy (BCE) Loss Function
|
||||
|
||||
Description:
|
||||
Quantifies dissimilarity between true labels (0 or 1) and predicted probabilities.
|
||||
It's widely used in binary classification tasks.
|
||||
|
||||
Formula:
|
||||
BCE = -Σ(y_true * log(y_pred) + (1 - y_true) * log(1 - y_pred))
|
||||
|
||||
Source:
|
||||
[Wikipedia - Cross entropy](https://en.wikipedia.org/wiki/Cross_entropy)
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def binary_cross_entropy(
|
||||
y_true: np.ndarray, y_pred: np.ndarray, epsilon: float = 1e-15
|
||||
) -> float:
|
||||
"""
|
||||
Calculate the BCE Loss between true labels and predicted probabilities.
|
||||
|
||||
Parameters:
|
||||
- y_true: True binary labels (0 or 1).
|
||||
- y_pred: Predicted probabilities for class 1.
|
||||
- epsilon: Small constant to avoid numerical instability.
|
||||
|
||||
Returns:
|
||||
- bce_loss: Binary Cross-Entropy Loss.
|
||||
|
||||
Example Usage:
|
||||
>>> true_labels = np.array([0, 1, 1, 0, 1])
|
||||
>>> predicted_probs = np.array([0.2, 0.7, 0.9, 0.3, 0.8])
|
||||
>>> binary_cross_entropy(true_labels, predicted_probs)
|
||||
0.2529995012327421
|
||||
>>> true_labels = np.array([0, 1, 1, 0, 1])
|
||||
>>> predicted_probs = np.array([0.3, 0.8, 0.9, 0.2])
|
||||
>>> binary_cross_entropy(true_labels, predicted_probs)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Input arrays must have the same length.
|
||||
"""
|
||||
if len(y_true) != len(y_pred):
|
||||
raise ValueError("Input arrays must have the same length.")
|
||||
# Clip predicted probabilities to avoid log(0) and log(1)
|
||||
y_pred = np.clip(y_pred, epsilon, 1 - epsilon)
|
||||
|
||||
# Calculate binary cross-entropy loss
|
||||
bce_loss = -(y_true * np.log(y_pred) + (1 - y_true) * np.log(1 - y_pred))
|
||||
|
||||
# Take the mean over all samples
|
||||
return np.mean(bce_loss)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
51
machine_learning/loss_functions/mean_squared_error.py
Normal file
51
machine_learning/loss_functions/mean_squared_error.py
Normal file
|
@ -0,0 +1,51 @@
|
|||
"""
|
||||
Mean Squared Error (MSE) Loss Function
|
||||
|
||||
Description:
|
||||
MSE measures the mean squared difference between true values and predicted values.
|
||||
It serves as a measure of the model's accuracy in regression tasks.
|
||||
|
||||
Formula:
|
||||
MSE = (1/n) * Σ(y_true - y_pred)^2
|
||||
|
||||
Source:
|
||||
[Wikipedia - Mean squared error](https://en.wikipedia.org/wiki/Mean_squared_error)
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def mean_squared_error(y_true: np.ndarray, y_pred: np.ndarray) -> float:
|
||||
"""
|
||||
Calculate the Mean Squared Error (MSE) between two arrays.
|
||||
|
||||
Parameters:
|
||||
- y_true: The true values (ground truth).
|
||||
- y_pred: The predicted values.
|
||||
|
||||
Returns:
|
||||
- mse: The Mean Squared Error between y_true and y_pred.
|
||||
|
||||
Example usage:
|
||||
>>> true_values = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
|
||||
>>> predicted_values = np.array([0.8, 2.1, 2.9, 4.2, 5.2])
|
||||
>>> mean_squared_error(true_values, predicted_values)
|
||||
0.028000000000000032
|
||||
>>> true_labels = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
|
||||
>>> predicted_probs = np.array([0.3, 0.8, 0.9, 0.2])
|
||||
>>> mean_squared_error(true_labels, predicted_probs)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Input arrays must have the same length.
|
||||
"""
|
||||
if len(y_true) != len(y_pred):
|
||||
raise ValueError("Input arrays must have the same length.")
|
||||
|
||||
squared_errors = (y_true - y_pred) ** 2
|
||||
return np.mean(squared_errors)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
Loading…
Reference in New Issue
Block a user