mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-30 22:23:42 +00:00
Longest Palindromic Subsequence
This commit is contained in:
parent
8dcffa3e71
commit
81c09d1a3b
|
@ -1,44 +1,53 @@
|
|||
"""
|
||||
author: Sanket Kittad
|
||||
Given a string s, find the longest palindromic subsequence's length in s.
|
||||
Input: s = "bbbab"
|
||||
Output: 4
|
||||
Explanation: One possible longest palindromic subsequence is "bbbb".
|
||||
Leetcode link: https://leetcode.com/problems/longest-palindromic-subsequence/description/
|
||||
"""
|
||||
|
||||
|
||||
def longest_palindromic_subsequence(input_string: str) -> int:
|
||||
"""
|
||||
This function returns the longest palindromic subsequence in a string
|
||||
>>> longest_palindromic_subsequence("bbbab")
|
||||
4
|
||||
>>> longest_palindromic_subsequence("bbabcbcab")
|
||||
7
|
||||
"""
|
||||
n = len(input_string)
|
||||
rev = input_string[::-1]
|
||||
m = len(rev)
|
||||
dp = [[-1] * (m + 1) for i in range(n + 1)]
|
||||
for i in range(n + 1):
|
||||
dp[i][0] = 0
|
||||
for i in range(m + 1):
|
||||
dp[0][i] = 0
|
||||
|
||||
# create and initialise dp array
|
||||
for i in range(1, n + 1):
|
||||
for j in range(1, m + 1):
|
||||
# If characters at i and j are the same
|
||||
# include them in the palindromic subsequence
|
||||
if input_string[i - 1] == rev[j - 1]:
|
||||
dp[i][j] = 1 + dp[i - 1][j - 1]
|
||||
else:
|
||||
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
|
||||
|
||||
return dp[n][m]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
def longest_palindromic_subsequence(input_string: str) -> int:
|
||||
"""
|
||||
Function to find the length of the longest palindromic subsequence
|
||||
in a given string using dynamic programming.
|
||||
|
||||
:param input_string: Input string
|
||||
:return: Length of the longest palindromic subsequence
|
||||
|
||||
>>> longest_palindromic_subsequence("bbbab")
|
||||
4
|
||||
>>> longest_palindromic_subsequence("cbbd")
|
||||
2
|
||||
>>> longest_palindromic_subsequence("")
|
||||
0
|
||||
>>> longest_palindromic_subsequence("a")
|
||||
1
|
||||
>>> longest_palindromic_subsequence("abcd")
|
||||
1
|
||||
>>> longest_palindromic_subsequence("agbdba")
|
||||
5
|
||||
"""
|
||||
n = len(input_string)
|
||||
|
||||
# Base case: if string is empty, return 0
|
||||
if n == 0:
|
||||
return 0
|
||||
|
||||
# dp[i][j] will represent the length of the longest palindromic subsequence
|
||||
# within the substring input_string[i...j]
|
||||
dp = [[0] * n for _ in range(n)]
|
||||
|
||||
# Every single character is a palindrome of length 1
|
||||
for i in range(n):
|
||||
dp[i][i] = 1
|
||||
|
||||
# Build the DP table for substrings of increasing length
|
||||
for length in range(2, n + 1):
|
||||
for i in range(n - length + 1):
|
||||
j = i + length - 1
|
||||
if input_string[i] == input_string[j]:
|
||||
dp[i][j] = dp[i + 1][j - 1] + 2
|
||||
else:
|
||||
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1])
|
||||
|
||||
# The longest palindromic subsequence length for the full string is dp[0][n-1]
|
||||
return dp[0][n - 1]
|
||||
|
||||
|
||||
# Example usage:
|
||||
if __name__ == "__main__":
|
||||
input_string = "bbbab"
|
||||
result = longest_palindromic_subsequence(input_string)
|
||||
print(f"Length of Longest Palindromic Subsequence: {result}")
|
||||
|
|
Loading…
Reference in New Issue
Block a user