Merge pull request #1 from TheAlgorithms/master

Update Branch
This commit is contained in:
Sayan Bandyopadhyay 2017-11-01 17:06:06 +05:30 committed by GitHub
commit 823ce64a22
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
81 changed files with 3979 additions and 473 deletions

101
Graphs/a_star.py Normal file
View File

@ -0,0 +1,101 @@
grid = [[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],#0 are free path whereas 1's are obstacles
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 0]]
'''
heuristic = [[9, 8, 7, 6, 5, 4],
[8, 7, 6, 5, 4, 3],
[7, 6, 5, 4, 3, 2],
[6, 5, 4, 3, 2, 1],
[5, 4, 3, 2, 1, 0]]'''
init = [0, 0]
goal = [len(grid)-1, len(grid[0])-1] #all coordinates are given in format [y,x]
cost = 1
#the cost map which pushes the path closer to the goal
heuristic = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
for i in range(len(grid)):
for j in range(len(grid[0])):
heuristic[i][j] = abs(i - goal[0]) + abs(j - goal[1])
if grid[i][j] == 1:
heuristic[i][j] = 99 #added extra penalty in the heuristic map
#the actions we can take
delta = [[-1, 0 ], # go up
[ 0, -1], # go left
[ 1, 0 ], # go down
[ 0, 1 ]] # go right
#function to search the path
def search(grid,init,goal,cost,heuristic):
closed = [[0 for col in range(len(grid[0]))] for row in range(len(grid))]# the referrence grid
closed[init[0]][init[1]] = 1
action = [[0 for col in range(len(grid[0]))] for row in range(len(grid))]#the action grid
x = init[0]
y = init[1]
g = 0
f = g + heuristic[init[0]][init[0]]
cell = [[f, g, x, y]]
found = False # flag that is set when search is complete
resign = False # flag set if we can't find expand
while not found and not resign:
if len(cell) == 0:
resign = True
return "FAIL"
else:
cell.sort()#to choose the least costliest action so as to move closer to the goal
cell.reverse()
next = cell.pop()
x = next[2]
y = next[3]
g = next[1]
f = next[0]
if x == goal[0] and y == goal[1]:
found = True
else:
for i in range(len(delta)):#to try out different valid actions
x2 = x + delta[i][0]
y2 = y + delta[i][1]
if x2 >= 0 and x2 < len(grid) and y2 >=0 and y2 < len(grid[0]):
if closed[x2][y2] == 0 and grid[x2][y2] == 0:
g2 = g + cost
f2 = g2 + heuristic[x2][y2]
cell.append([f2, g2, x2, y2])
closed[x2][y2] = 1
action[x2][y2] = i
invpath = []
x = goal[0]
y = goal[1]
invpath.append([x, y])#we get the reverse path from here
while x != init[0] or y != init[1]:
x2 = x - delta[action[x][y]][0]
y2 = y - delta[action[x][y]][1]
x = x2
y = y2
invpath.append([x, y])
path = []
for i in range(len(invpath)):
path.append(invpath[len(invpath) - 1 - i])
print "ACTION MAP"
for i in range(len(action)):
print action[i]
return path
a = search(grid,init,goal,cost,heuristic)
for i in range(len(a)):
print a[i]

267
Graphs/basic-graphs.py Normal file
View File

@ -0,0 +1,267 @@
# Accept No. of Nodes and edges
n, m = map(int, raw_input().split(" "))
# Initialising Dictionary of edges
g = {}
for i in xrange(n):
g[i + 1] = []
"""
--------------------------------------------------------------------------------
Accepting edges of Unweighted Directed Graphs
--------------------------------------------------------------------------------
"""
for _ in xrange(m):
x, y = map(int, raw_input().split(" "))
g[x].append(y)
"""
--------------------------------------------------------------------------------
Accepting edges of Unweighted Undirected Graphs
--------------------------------------------------------------------------------
"""
for _ in xrange(m):
x, y = map(int, raw_input().split(" "))
g[x].append(y)
g[y].append(x)
"""
--------------------------------------------------------------------------------
Accepting edges of Weighted Undirected Graphs
--------------------------------------------------------------------------------
"""
for _ in xrange(m):
x, y, r = map(int, raw_input().split(" "))
g[x].append([y, r])
g[y].append([x, r])
"""
--------------------------------------------------------------------------------
Depth First Search.
Args : G - Dictionary of edges
s - Starting Node
Vars : vis - Set of visited nodes
S - Traversal Stack
--------------------------------------------------------------------------------
"""
def dfs(G, s):
vis, S = set([s]), [s]
print s
while S:
flag = 0
for i in G[S[-1]]:
if i not in vis:
S.append(i)
vis.add(i)
flag = 1
print i
break
if not flag:
S.pop()
"""
--------------------------------------------------------------------------------
Breadth First Search.
Args : G - Dictionary of edges
s - Starting Node
Vars : vis - Set of visited nodes
Q - Traveral Stack
--------------------------------------------------------------------------------
"""
from collections import deque
def bfs(G, s):
vis, Q = set([s]), deque([s])
print s
while Q:
u = Q.popleft()
for v in G[u]:
if v not in vis:
vis.add(v)
Q.append(v)
print v
"""
--------------------------------------------------------------------------------
Dijkstra's shortest path Algorithm
Args : G - Dictionary of edges
s - Starting Node
Vars : dist - Dictionary storing shortest distance from s to every other node
known - Set of knows nodes
path - Preceding node in path
--------------------------------------------------------------------------------
"""
def dijk(G, s):
dist, known, path = {s: 0}, set(), {s: 0}
while True:
if len(known) == len(G) - 1:
break
mini = 100000
for i in dist:
if i not in known and dist[i] < mini:
mini = dist[i]
u = i
known.add(u)
for v in G[u]:
if v[0] not in known:
if dist[u] + v[1] < dist.get(v[0], 100000):
dist[v[0]] = dist[u] + v[1]
path[v[0]] = u
for i in dist:
if i != s:
print dist[i]
"""
--------------------------------------------------------------------------------
Topological Sort
--------------------------------------------------------------------------------
"""
from collections import deque
def topo(G, ind=None, Q=[1]):
if ind == None:
ind = [0] * (len(G) + 1) # SInce oth Index is ignored
for u in G:
for v in G[u]:
ind[v] += 1
Q = deque()
for i in G:
if ind[i] == 0:
Q.append(i)
if len(Q) == 0:
return
v = Q.popleft()
print v
for w in G[v]:
ind[w] -= 1
if ind[w] == 0:
Q.append(w)
topo(G, ind, Q)
"""
--------------------------------------------------------------------------------
Reading an Adjacency matrix
--------------------------------------------------------------------------------
"""
def adjm():
n, a = input(), []
for i in xrange(n):
a.append(map(int, raw_input().split()))
return a, n
"""
--------------------------------------------------------------------------------
Floyd Warshall's algorithm
Args : G - Dictionary of edges
s - Starting Node
Vars : dist - Dictionary storing shortest distance from s to every other node
known - Set of knows nodes
path - Preceding node in path
--------------------------------------------------------------------------------
"""
def floy((A, n)):
dist = list(A)
path = [[0] * n for i in xrange(n)]
for k in xrange(n):
for i in xrange(n):
for j in xrange(n):
if dist[i][j] > dist[i][k] + dist[k][j]:
dist[i][j] = dist[i][k] + dist[k][j]
path[i][k] = k
print dist
"""
--------------------------------------------------------------------------------
Prim's MST Algorithm
Args : G - Dictionary of edges
s - Starting Node
Vars : dist - Dictionary storing shortest distance from s to nearest node
known - Set of knows nodes
path - Preceding node in path
--------------------------------------------------------------------------------
"""
def prim(G, s):
dist, known, path = {s: 0}, set(), {s: 0}
while True:
if len(known) == len(G) - 1:
break
mini = 100000
for i in dist:
if i not in known and dist[i] < mini:
mini = dist[i]
u = i
known.add(u)
for v in G[u]:
if v[0] not in known:
if v[1] < dist.get(v[0], 100000):
dist[v[0]] = v[1]
path[v[0]] = u
"""
--------------------------------------------------------------------------------
Accepting Edge list
Vars : n - Number of nodes
m - Number of edges
Returns : l - Edge list
n - Number of Nodes
--------------------------------------------------------------------------------
"""
def edglist():
n, m = map(int, raw_input().split(" "))
l = []
for i in xrange(m):
l.append(map(int, raw_input().split(' ')))
return l, n
"""
--------------------------------------------------------------------------------
Kruskal's MST Algorithm
Args : E - Edge list
n - Number of Nodes
Vars : s - Set of all nodes as unique disjoint sets (initially)
--------------------------------------------------------------------------------
"""
def krusk((E, n)):
# Sort edges on the basis of distance
E.sort(reverse=True, key=lambda x: x[2])
s = [set([i]) for i in range(1, n + 1)]
while True:
if len(s) == 1:
break
print s
x = E.pop()
for i in xrange(len(s)):
if x[0] in s[i]:
break
for j in xrange(len(s)):
if x[1] in s[j]:
if i == j:
break
s[j].update(s[i])
s.pop(i)
break

View File

@ -0,0 +1,31 @@
num_nodes, num_edges = list(map(int,input().split()))
edges = []
for i in range(num_edges):
node1, node2, cost = list(map(int,input().split()))
edges.append((i,node1,node2,cost))
edges = sorted(edges, key=lambda edge: edge[3])
parent = [i for i in range(num_nodes)]
def find_parent(i):
if(i != parent[i]):
parent[i] = find_parent(parent[i])
return parent[i]
minimum_spanning_tree_cost = 0
minimum_spanning_tree = []
for edge in edges:
parent_a = find_parent(edge[1])
parent_b = find_parent(edge[2])
if(parent_a != parent_b):
minimum_spanning_tree_cost += edge[3]
minimum_spanning_tree.append(edge)
parent[parent_a] = parent_b
print(minimum_spanning_tree_cost)
for edge in minimum_spanning_tree:
print(edge)

45
Graphs/scc_kosaraju.py Normal file
View File

@ -0,0 +1,45 @@
# n - no of nodes, m - no of edges
n, m = list(map(int,input().split()))
g = [[] for i in range(n)] #graph
r = [[] for i in range(n)] #reversed graph
# input graph data (edges)
for i in range(m):
u, v = list(map(int,input().split()))
g[u].append(v)
r[v].append(u)
stack = []
visit = [False]*n
scc = []
component = []
def dfs(u):
global g, r, scc, component, visit, stack
if visit[u]: return
visit[u] = True
for v in g[u]:
dfs(v)
stack.append(u)
def dfs2(u):
global g, r, scc, component, visit, stack
if visit[u]: return
visit[u] = True
component.append(u)
for v in r[u]:
dfs2(v)
def kosaraju():
global g, r, scc, component, visit, stack
for i in range(n):
dfs(i)
visit = [False]*n
for i in stack[::-1]:
if visit[i]: continue
component = []
dfs2(i)
scc.append(component)
return scc
print(kosaraju())

262
Multi_Hueristic_Astar.py Normal file
View File

@ -0,0 +1,262 @@
import heapq
import numpy as np
import math
import copy
class PriorityQueue:
def __init__(self):
self.elements = []
self.set = set()
def minkey(self):
if not self.empty():
return self.elements[0][0]
else:
return float('inf')
def empty(self):
return len(self.elements) == 0
def put(self, item, priority):
if item not in self.set:
heapq.heappush(self.elements, (priority, item))
self.set.add(item)
else:
# update
# print("update", item)
temp = []
(pri, x) = heapq.heappop(self.elements)
while x != item:
temp.append((pri, x))
(pri, x) = heapq.heappop(self.elements)
temp.append((priority, item))
for (pro, xxx) in temp:
heapq.heappush(self.elements, (pro, xxx))
def remove_element(self, item):
if item in self.set:
self.set.remove(item)
temp = []
(pro, x) = heapq.heappop(self.elements)
while x != item:
temp.append((pro, x))
(pro, x) = heapq.heappop(self.elements)
for (prito, yyy) in temp:
heapq.heappush(self.elements, (prito, yyy))
def top_show(self):
return self.elements[0][1]
def get(self):
(priority, item) = heapq.heappop(self.elements)
self.set.remove(item)
return (priority, item)
def consistent_hueristic(P, goal):
# euclidean distance
a = np.array(P)
b = np.array(goal)
return np.linalg.norm(a - b)
def hueristic_2(P, goal):
# integer division by time variable
return consistent_hueristic(P, goal) // t
def hueristic_1(P, goal):
# manhattan distance
return abs(P[0] - goal[0]) + abs(P[1] - goal[1])
def key(start, i, goal, g_function):
ans = g_function[start] + W1 * hueristics[i](start, goal)
return ans
def do_something(back_pointer, goal, start):
grid = np.chararray((n, n))
for i in range(n):
for j in range(n):
grid[i][j] = '*'
for i in range(n):
for j in range(n):
if (j, (n-1)-i) in blocks:
grid[i][j] = "#"
grid[0][(n-1)] = "-"
x = back_pointer[goal]
while x != start:
(x_c, y_c) = x
# print(x)
grid[(n-1)-y_c][x_c] = "-"
x = back_pointer[x]
grid[(n-1)][0] = "-"
for i in xrange(n):
for j in range(n):
if (i, j) == (0, n-1):
print grid[i][j],
print "<-- End position",
else:
print grid[i][j],
print
print("^")
print("Start position")
print
print("# is an obstacle")
print("- is the path taken by algorithm")
print("PATH TAKEN BY THE ALGORITHM IS:-")
x = back_pointer[goal]
while x != start:
print x,
x = back_pointer[x]
print x
quit()
def valid(p):
if p[0] < 0 or p[0] > n-1:
return False
if p[1] < 0 or p[1] > n-1:
return False
return True
def expand_state(s, j, visited, g_function, close_list_anchor, close_list_inad, open_list, back_pointer):
for itera in range(n_hueristic):
open_list[itera].remove_element(s)
# print("s", s)
# print("j", j)
(x, y) = s
left = (x-1, y)
right = (x+1, y)
up = (x, y+1)
down = (x, y-1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(neighbours) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(neighbours)
back_pointer[neighbours] = -1
g_function[neighbours] = float('inf')
if valid(neighbours) and g_function[neighbours] > g_function[s] + 1:
g_function[neighbours] = g_function[s] + 1
back_pointer[neighbours] = s
if neighbours not in close_list_anchor:
open_list[0].put(neighbours, key(neighbours, 0, goal, g_function))
if neighbours not in close_list_inad:
for var in range(1,n_hueristic):
if key(neighbours, var, goal, g_function) <= W2 * key(neighbours, 0, goal, g_function):
# print("why not plssssssssss")
open_list[j].put(neighbours, key(neighbours, var, goal, g_function))
# print
def make_common_ground():
some_list = []
# block 1
for x in range(1, 5):
for y in range(1, 6):
some_list.append((x, y))
# line
for x in range(15, 20):
some_list.append((x, 17))
# block 2 big
for x in range(10, 19):
for y in range(1, 15):
some_list.append((x, y))
# L block
for x in range(1, 4):
for y in range(12, 19):
some_list.append((x, y))
for x in range(3, 13):
for y in range(16, 19):
some_list.append((x, y))
return some_list
hueristics = {0: consistent_hueristic, 1: hueristic_1, 2: hueristic_2}
blocks_blk = [(0, 1),(1, 1),(2, 1),(3, 1),(4, 1),(5, 1),(6, 1),(7, 1),(8, 1),(9, 1),(10, 1),(11, 1),(12, 1),(13, 1),(14, 1),(15, 1),(16, 1),(17, 1),(18, 1), (19, 1)]
blocks_no = []
blocks_all = make_common_ground()
blocks = blocks_blk
# hyper parameters
W1 = 1
W2 = 1
n = 20
n_hueristic = 3 # one consistent and two other inconsistent
# start and end destination
start = (0, 0)
goal = (n-1, n-1)
t = 1
def multi_a_star(start, goal, n_hueristic):
g_function = {start: 0, goal: float('inf')}
back_pointer = {start:-1, goal:-1}
open_list = []
visited = set()
for i in range(n_hueristic):
open_list.append(PriorityQueue())
open_list[i].put(start, key(start, i, goal, g_function))
close_list_anchor = []
close_list_inad = []
while open_list[0].minkey() < float('inf'):
for i in range(1, n_hueristic):
# print("i", i)
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= W2 * open_list[0].minkey():
global t
t += 1
# print("less prio")
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float('inf'):
do_something(back_pointer, goal, start)
else:
_, get_s = open_list[i].top_show()
visited.add(get_s)
expand_state(get_s, i, visited, g_function, close_list_anchor, close_list_inad, open_list, back_pointer)
close_list_inad.append(get_s)
else:
# print("more prio")
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float('inf'):
do_something(back_pointer, goal, start)
else:
# print("hoolla")
get_s = open_list[0].top_show()
visited.add(get_s)
expand_state(get_s, 0, visited, g_function, close_list_anchor, close_list_inad, open_list, back_pointer)
close_list_anchor.append(get_s)
print("No path found to goal")
print
for i in range(n-1,-1, -1):
for j in range(n):
if (j, i) in blocks:
print '#',
elif (j, i) in back_pointer:
if (j, i) == (n-1, n-1):
print '*',
else:
print '-',
else:
print '*',
if (j, i) == (n-1, n-1):
print '<-- End position',
print
print("^")
print("Start position")
print
print("# is an obstacle")
print("- is the path taken by algorithm")
multi_a_star(start, goal, n_hueristic)

View File

@ -0,0 +1,305 @@
#-*- coding: utf-8 -*-
'''
- - - - - -- - - - - - - - - - - - - - - - - - - - - - -
Name - - CNN - Convolution Neural Network For Photo Recognizing
Goal - - Recognize Handing Writting Word Photo
DetailTotal 5 layers neural network
* Convolution layer
* Pooling layer
* Input layer layer of BP
* Hiden layer of BP
* Output layer of BP
Author: Stephen Lee
Github: 245885195@qq.com
Date: 2017.9.20
- - - - - -- - - - - - - - - - - - - - - - - - - - - - -
'''
import numpy as np
import matplotlib.pyplot as plt
class CNN():
def __init__(self,conv1_get,size_p1,bp_num1,bp_num2,bp_num3,rate_w=0.2,rate_t=0.2):
'''
:param conv1_get: [a,c,d]size, number, step of convolution kernel
:param size_p1: pooling size
:param bp_num1: units number of flatten layer
:param bp_num2: units number of hidden layer
:param bp_num3: units number of output layer
:param rate_w: rate of weight learning
:param rate_t: rate of threshold learning
'''
self.num_bp1 = bp_num1
self.num_bp2 = bp_num2
self.num_bp3 = bp_num3
self.conv1 = conv1_get[:2]
self.step_conv1 = conv1_get[2]
self.size_pooling1 = size_p1
self.rate_weight = rate_w
self.rate_thre = rate_t
self.w_conv1 = [np.mat(-1*np.random.rand(self.conv1[0],self.conv1[0])+0.5) for i in range(self.conv1[1])]
self.wkj = np.mat(-1 * np.random.rand(self.num_bp3, self.num_bp2) + 0.5)
self.vji = np.mat(-1*np.random.rand(self.num_bp2, self.num_bp1)+0.5)
self.thre_conv1 = -2*np.random.rand(self.conv1[1])+1
self.thre_bp2 = -2*np.random.rand(self.num_bp2)+1
self.thre_bp3 = -2*np.random.rand(self.num_bp3)+1
def save_model(self,save_path):
#save model dict with pickle
import pickle
model_dic = {'num_bp1':self.num_bp1,
'num_bp2':self.num_bp2,
'num_bp3':self.num_bp3,
'conv1':self.conv1,
'step_conv1':self.step_conv1,
'size_pooling1':self.size_pooling1,
'rate_weight':self.rate_weight,
'rate_thre':self.rate_thre,
'w_conv1':self.w_conv1,
'wkj':self.wkj,
'vji':self.vji,
'thre_conv1':self.thre_conv1,
'thre_bp2':self.thre_bp2,
'thre_bp3':self.thre_bp3}
with open(save_path, 'wb') as f:
pickle.dump(model_dic, f)
print('Model saved %s'% save_path)
@classmethod
def ReadModel(cls,model_path):
#read saved model
import pickle
with open(model_path, 'rb') as f:
model_dic = pickle.load(f)
conv_get= model_dic.get('conv1')
conv_get.append(model_dic.get('step_conv1'))
size_p1 = model_dic.get('size_pooling1')
bp1 = model_dic.get('num_bp1')
bp2 = model_dic.get('num_bp2')
bp3 = model_dic.get('num_bp3')
r_w = model_dic.get('rate_weight')
r_t = model_dic.get('rate_thre')
#create model instance
conv_ins = CNN(conv_get,size_p1,bp1,bp2,bp3,r_w,r_t)
#modify model parameter
conv_ins.w_conv1 = model_dic.get('w_conv1')
conv_ins.wkj = model_dic.get('wkj')
conv_ins.vji = model_dic.get('vji')
conv_ins.thre_conv1 = model_dic.get('thre_conv1')
conv_ins.thre_bp2 = model_dic.get('thre_bp2')
conv_ins.thre_bp3 = model_dic.get('thre_bp3')
return conv_ins
def sig(self,x):
return 1 / (1 + np.exp(-1*x))
def do_round(self,x):
return round(x, 3)
def convolute(self,data,convs,w_convs,thre_convs,conv_step):
#convolution process
size_conv = convs[0]
num_conv =convs[1]
size_data = np.shape(data)[0]
#get the data slice of original image data, data_focus
data_focus = []
for i_focus in range(0, size_data - size_conv + 1, conv_step):
for j_focus in range(0, size_data - size_conv + 1, conv_step):
focus = data[i_focus:i_focus + size_conv, j_focus:j_focus + size_conv]
data_focus.append(focus)
#caculate the feature map of every single kernel, and saved as list of matrix
data_featuremap = []
Size_FeatureMap = int((size_data - size_conv) / conv_step + 1)
for i_map in range(num_conv):
featuremap = []
for i_focus in range(len(data_focus)):
net_focus = np.sum(np.multiply(data_focus[i_focus], w_convs[i_map])) - thre_convs[i_map]
featuremap.append(self.sig(net_focus))
featuremap = np.asmatrix(featuremap).reshape(Size_FeatureMap, Size_FeatureMap)
data_featuremap.append(featuremap)
#expanding the data slice to One dimenssion
focus1_list = []
for each_focus in data_focus:
focus1_list.extend(self.Expand_Mat(each_focus))
focus_list = np.asarray(focus1_list)
return focus_list,data_featuremap
def pooling(self,featuremaps,size_pooling,type='average_pool'):
#pooling process
size_map = len(featuremaps[0])
size_pooled = int(size_map/size_pooling)
featuremap_pooled = []
for i_map in range(len(featuremaps)):
map = featuremaps[i_map]
map_pooled = []
for i_focus in range(0,size_map,size_pooling):
for j_focus in range(0, size_map, size_pooling):
focus = map[i_focus:i_focus + size_pooling, j_focus:j_focus + size_pooling]
if type == 'average_pool':
#average pooling
map_pooled.append(np.average(focus))
elif type == 'max_pooling':
#max pooling
map_pooled.append(np.max(focus))
map_pooled = np.asmatrix(map_pooled).reshape(size_pooled,size_pooled)
featuremap_pooled.append(map_pooled)
return featuremap_pooled
def _expand(self,datas):
#expanding three dimension data to one dimension list
data_expanded = []
for i in range(len(datas)):
shapes = np.shape(datas[i])
data_listed = datas[i].reshape(1,shapes[0]*shapes[1])
data_listed = data_listed.getA().tolist()[0]
data_expanded.extend(data_listed)
data_expanded = np.asarray(data_expanded)
return data_expanded
def _expand_mat(self,data_mat):
#expanding matrix to one dimension list
data_mat = np.asarray(data_mat)
shapes = np.shape(data_mat)
data_expanded = data_mat.reshape(1,shapes[0]*shapes[1])
return data_expanded
def _calculate_gradient_from_pool(self,out_map,pd_pool,num_map,size_map,size_pooling):
'''
calcluate the gradient from the data slice of pool layer
pd_pool: list of matrix
out_map: the shape of data slice(size_map*size_map)
return: pd_all: list of matrix, [num, size_map, size_map]
'''
pd_all = []
i_pool = 0
for i_map in range(num_map):
pd_conv1 = np.ones((size_map, size_map))
for i in range(0, size_map, size_pooling):
for j in range(0, size_map, size_pooling):
pd_conv1[i:i + size_pooling, j:j + size_pooling] = pd_pool[i_pool]
i_pool = i_pool + 1
pd_conv2 = np.multiply(pd_conv1,np.multiply(out_map[i_map],(1-out_map[i_map])))
pd_all.append(pd_conv2)
return pd_all
def trian(self,patterns,datas_train, datas_teach, n_repeat, error_accuracy,draw_e = bool):
#model traning
print('----------------------Start Training-------------------------')
print(' - - Shape: Train_Data ',np.shape(datas_train))
print(' - - Shape: Teach_Data ',np.shape(datas_teach))
rp = 0
all_mse = []
mse = 10000
while rp < n_repeat and mse >= error_accuracy:
alle = 0
print('-------------Learning Time %d--------------'%rp)
for p in range(len(datas_train)):
#print('------------Learning Image: %d--------------'%p)
data_train = np.asmatrix(datas_train[p])
data_teach = np.asarray(datas_teach[p])
data_focus1,data_conved1 = self.convolute(data_train,self.conv1,self.w_conv1,
self.thre_conv1,conv_step=self.step_conv1)
data_pooled1 = self.pooling(data_conved1,self.size_pooling1)
shape_featuremap1 = np.shape(data_conved1)
'''
print(' -----original shape ', np.shape(data_train))
print(' ---- after convolution ',np.shape(data_conv1))
print(' -----after pooling ',np.shape(data_pooled1))
'''
data_bp_input = self._expand(data_pooled1)
bp_out1 = data_bp_input
bp_net_j = np.dot(bp_out1,self.vji.T) - self.thre_bp2
bp_out2 = self.sig(bp_net_j)
bp_net_k = np.dot(bp_out2 ,self.wkj.T) - self.thre_bp3
bp_out3 = self.sig(bp_net_k)
#--------------Model Leaning ------------------------
# calcluate error and gradient---------------
pd_k_all = np.multiply((data_teach - bp_out3), np.multiply(bp_out3, (1 - bp_out3)))
pd_j_all = np.multiply(np.dot(pd_k_all,self.wkj), np.multiply(bp_out2, (1 - bp_out2)))
pd_i_all = np.dot(pd_j_all,self.vji)
pd_conv1_pooled = pd_i_all / (self.size_pooling1*self.size_pooling1)
pd_conv1_pooled = pd_conv1_pooled.T.getA().tolist()
pd_conv1_all = self._calculate_gradient_from_pool(data_conved1,pd_conv1_pooled,shape_featuremap1[0],
shape_featuremap1[1],self.size_pooling1)
#weight and threshold learning process---------
#convolution layer
for k_conv in range(self.conv1[1]):
pd_conv_list = self._expand_mat(pd_conv1_all[k_conv])
delta_w = self.rate_weight * np.dot(pd_conv_list,data_focus1)
self.w_conv1[k_conv] = self.w_conv1[k_conv] + delta_w.reshape((self.conv1[0],self.conv1[0]))
self.thre_conv1[k_conv] = self.thre_conv1[k_conv] - np.sum(pd_conv1_all[k_conv]) * self.rate_thre
#all connected layer
self.wkj = self.wkj + pd_k_all.T * bp_out2 * self.rate_weight
self.vji = self.vji + pd_j_all.T * bp_out1 * self.rate_weight
self.thre_bp3 = self.thre_bp3 - pd_k_all * self.rate_thre
self.thre_bp2 = self.thre_bp2 - pd_j_all * self.rate_thre
# calculate the sum error of all single image
errors = np.sum(abs((data_teach - bp_out3)))
alle = alle + errors
#print(' ----Teach ',data_teach)
#print(' ----BP_output ',bp_out3)
rp = rp + 1
mse = alle/patterns
all_mse.append(mse)
def draw_error():
yplot = [error_accuracy for i in range(int(n_repeat * 1.2))]
plt.plot(all_mse, '+-')
plt.plot(yplot, 'r--')
plt.xlabel('Learning Times')
plt.ylabel('All_mse')
plt.grid(True, alpha=0.5)
plt.show()
print('------------------Training Complished---------------------')
print(' - - Training epoch: ', rp, ' - - Mse: %.6f' % mse)
if draw_e:
draw_error()
return mse
def predict(self,datas_test):
#model predict
produce_out = []
print('-------------------Start Testing-------------------------')
print(' - - Shape: Test_Data ',np.shape(datas_test))
for p in range(len(datas_test)):
data_test = np.asmatrix(datas_test[p])
data_focus1, data_conved1 = self.convolute(data_test, self.conv1, self.w_conv1,
self.thre_conv1, conv_step=self.step_conv1)
data_pooled1 = self.pooling(data_conved1, self.size_pooling1)
data_bp_input = self._expand(data_pooled1)
bp_out1 = data_bp_input
bp_net_j = bp_out1 * self.vji.T - self.thre_bp2
bp_out2 = self.sig(bp_net_j)
bp_net_k = bp_out2 * self.wkj.T - self.thre_bp3
bp_out3 = self.sig(bp_net_k)
produce_out.extend(bp_out3.getA().tolist())
res = [list(map(self.do_round,each)) for each in produce_out]
return np.asarray(res)
def convolution(self,data):
#return the data of image after convoluting process so we can check it out
data_test = np.asmatrix(data)
data_focus1, data_conved1 = self.convolute(data_test, self.conv1, self.w_conv1,
self.thre_conv1, conv_step=self.step_conv1)
data_pooled1 = self.pooling(data_conved1, self.size_pooling1)
return data_conved1,data_pooled1
if __name__ == '__main__':
pass
'''
I will put the example on other file
'''

View File

@ -0,0 +1,12 @@
'''
Problem Statement:
If we list all the natural numbers below 10 that are multiples of 3 or 5,
we get 3,5,6 and 9. The sum of these multiples is 23.
Find the sum of all the multiples of 3 or 5 below N.
'''
n = int(raw_input().strip())
sum=0;
for a in range(3,n):
if(a%3==0 or a%5==0):
sum+=a
print sum;

View File

@ -0,0 +1,15 @@
'''
Problem Statement:
If we list all the natural numbers below 10 that are multiples of 3 or 5,
we get 3,5,6 and 9. The sum of these multiples is 23.
Find the sum of all the multiples of 3 or 5 below N.
'''
n = int(raw_input().strip())
sum = 0
terms = (n-1)/3
sum+= ((terms)*(6+(terms-1)*3))/2 #sum of an A.P.
terms = (n-1)/5
sum+= ((terms)*(10+(terms-1)*5))/2
terms = (n-1)/15
sum-= ((terms)*(30+(terms-1)*15))/2
print sum

View File

@ -0,0 +1,42 @@
'''
Problem Statement:
If we list all the natural numbers below 10 that are multiples of 3 or 5,
we get 3,5,6 and 9. The sum of these multiples is 23.
Find the sum of all the multiples of 3 or 5 below N.
'''
'''
This solution is based on the pattern that the successive numbers in the series follow: 0+3,+2,+1,+3,+1,+2,+3.
'''
n = int(raw_input().strip())
sum=0;
num=0;
while(1):
num+=3
if(num>=n):
break
sum+=num
num+=2
if(num>=n):
break
sum+=num
num+=1
if(num>=n):
break
sum+=num
num+=3
if(num>=n):
break
sum+=num
num+=1
if(num>=n):
break
sum+=num
num+=2
if(num>=n):
break
sum+=num
num+=3
if(num>=n):
break
sum+=num
print sum;

View File

@ -0,0 +1,18 @@
'''
Problem:
Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2,
the first 10 terms will be:
1,2,3,5,8,13,21,34,55,89,..
By considering the terms in the Fibonacci sequence whose values do not exceed n, find the sum of the even-valued terms.
e.g. for n=10, we have {2,8}, sum is 10.
'''
n = int(raw_input().strip())
i=1; j=2; sum=0
while(j<=n):
if((j&1)==0): #can also use (j%2==0)
sum+=j
temp=i
i=j
j=temp+i
print sum

View File

@ -0,0 +1,38 @@
'''
Problem:
The prime factors of 13195 are 5,7,13 and 29. What is the largest prime factor of a given number N?
e.g. for 10, largest prime factor = 5. For 17, largest prime factor = 17.
'''
import math
def isprime(no):
if(no==2):
return True
elif (no%2==0):
return False
sq = int(math.sqrt(no))+1
for i in range(3,sq,2):
if(no%i==0):
return False
return True
max=0
n=int(input())
if(isprime(n)):
print n
else:
while (n%2==0):
n=n/2
if(isprime(n)):
print n
else:
n1 = int(math.sqrt(n))+1
for i in range(3,n1,2):
if(n%i==0):
if(isprime(n/i)):
max=n/i
break
elif(isprime(i)):
max=i
print max

View File

@ -0,0 +1,16 @@
'''
Problem:
The prime factors of 13195 are 5,7,13 and 29. What is the largest prime factor of a given number N?
e.g. for 10, largest prime factor = 5. For 17, largest prime factor = 17.
'''
n=int(input())
prime=1
i=2
while(i*i<=n):
while(n%i==0):
prime=i
n/=i
i+=1
if(n>1):
prime=n
print prime

View File

@ -0,0 +1,15 @@
'''
Problem:
A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 x 99.
Find the largest palindrome made from the product of two 3-digit numbers which is less than N.
'''
n=int(input())
for i in range(n-1,10000,-1):
temp=str(i)
if(temp==temp[::-1]):
j=999
while(j!=99):
if((i%j==0) and (len(str(i/j))==3)):
print i
exit(0)
j-=1

View File

@ -0,0 +1,18 @@
'''
Problem:
A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 x 99.
Find the largest palindrome made from the product of two 3-digit numbers which is less than N.
'''
arr = []
for i in range(999,100,-1):
for j in range(999,100,-1):
t = str(i*j)
if t == t[::-1]:
arr.append(i*j)
arr.sort()
n=int(input())
for i in arr[::-1]:
if(i<n):
print i
exit(0)

View File

@ -0,0 +1,20 @@
'''
Problem:
2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder.
What is the smallest positive number that is evenly divisible(divisible with no remainder) by all of the numbers from 1 to N?
'''
n = int(input())
i = 0
while 1:
i+=n*(n-1)
nfound=0
for j in range(2,n):
if (i%j != 0):
nfound=1
break
if(nfound==0):
if(i==0):
i=1
print i
break

View File

@ -0,0 +1,19 @@
# -*- coding: utf-8 -*-
'''
Problem:
The sum of the squares of the first ten natural numbers is,
1^2 + 2^2 + ... + 10^2 = 385
The square of the sum of the first ten natural numbers is,
(1 + 2 + ... + 10)^2 = 552 = 3025
Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 385 = 2640.
Find the difference between the sum of the squares of the first N natural numbers and the square of the sum.
'''
suma = 0
sumb = 0
n = int(input())
for i in range(1,n+1):
suma += i**2
sumb += i
sum = sumb**2 - suma
print sum

View File

@ -0,0 +1,15 @@
# -*- coding: utf-8 -*-
'''
Problem:
The sum of the squares of the first ten natural numbers is,
1^2 + 2^2 + ... + 10^2 = 385
The square of the sum of the first ten natural numbers is,
(1 + 2 + ... + 10)^2 = 552 = 3025
Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 385 = 2640.
Find the difference between the sum of the squares of the first N natural numbers and the square of the sum.
'''
n = int(input())
suma = n*(n+1)/2
suma **= 2
sumb = n*(n+1)*(2*n+1)/6
print suma-sumb

View File

@ -0,0 +1,29 @@
'''
By listing the first six prime numbers:
2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13.
What is the Nth prime number?
'''
from math import sqrt
def isprime(n):
if (n==2):
return True
elif (n%2==0):
return False
else:
sq = int(sqrt(n))+1
for i in range(3,sq,2):
if(n%i==0):
return False
return True
n = int(input())
i=0
j=1
while(i!=n and j<3):
j+=1
if (isprime(j)):
i+=1
while(i!=n):
j+=2
if(isprime(j)):
i+=1
print j

View File

@ -0,0 +1,13 @@
'''
Problem Statement:
Work out the first ten digits of the sum of the N 50-digit numbers.
'''
n = int(input().strip())
array = []
for i in range(n):
array.append(int(input().strip()))
print(str(sum(array))[:10])

39
Project Euler/README.md Normal file
View File

@ -0,0 +1,39 @@
# ProjectEuler
Problems are taken from https://projecteuler.net/.
Project Euler is a series of challenging mathematical/computer programming problems that will require more than just mathematical
insights to solve. Project Euler is ideal for mathematicians who are learning to code.
Here the efficiency of your code is also checked.
I've tried to provide all the best possible solutions.
PROBLEMS:
1. If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3,5,6 and 9. The sum of these multiples is 23.
Find the sum of all the multiples of 3 or 5 below N.
2. Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2,
the first 10 terms will be:
1,2,3,5,8,13,21,34,55,89,..
By considering the terms in the Fibonacci sequence whose values do not exceed n, find the sum of the even-valued terms.
e.g. for n=10, we have {2,8}, sum is 10.
3. The prime factors of 13195 are 5,7,13 and 29. What is the largest prime factor of a given number N?
e.g. for 10, largest prime factor = 5. For 17, largest prime factor = 17.
4. A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99.
Find the largest palindrome made from the product of two 3-digit numbers which is less than N.
5. 2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder.
What is the smallest positive number that is evenly divisible(divisible with no remainder) by all of the numbers from 1 to N?
6. The sum of the squares of the first ten natural numbers is,
1^2 + 2^2 + ... + 10^2 = 385
The square of the sum of the first ten natural numbers is,
(1 + 2 + ... + 10)^2 = 552 = 3025
Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 385 = 2640.
Find the difference between the sum of the squares of the first N natural numbers and the square of the sum.
7. By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13.
What is the Nth prime number?

View File

@ -1,4 +1,4 @@
# The Algorithms - Python [![Build Status](https://travis-ci.org/TheAlgorithms/Python.svg)](https://travis-ci.org/TheAlgorithms/Python)
# The Algorithms - Python <!-- [![Build Status](https://travis-ci.org/TheAlgorithms/Python.svg)](https://travis-ci.org/TheAlgorithms/Python) -->
### All algorithms implemented in Python (for education)
@ -128,6 +128,13 @@ The method is named after **Julius Caesar**, who used it in his private correspo
The encryption step performed by a Caesar cipher is often incorporated as part of more complex schemes, such as the Vigenère cipher, and still has modern application in the ROT13 system. As with all single-alphabet substitution ciphers, the Caesar cipher is easily broken and in modern practice offers essentially no communication security.
###### Source: [Wikipedia](https://en.wikipedia.org/wiki/Caesar_cipher)
### Vigenère
The **Vigenère cipher** is a method of encrypting alphabetic text by using a series of **interwoven Caesar ciphers** based on the letters of a keyword. It is **a form of polyalphabetic substitution**.<br>
The Vigenère cipher has been reinvented many times. The method was originally described by Giovan Battista Bellaso in his 1553 book La cifra del. Sig. Giovan Battista Bellaso; however, the scheme was later misattributed to Blaise de Vigenère in the 19th century, and is now widely known as the "Vigenère cipher".<br>
Though the cipher is easy to understand and implement, for three centuries it resisted all attempts to break it; this earned it the description **le chiffre indéchiffrable**(French for 'the indecipherable cipher').
Many people have tried to implement encryption schemes that are essentially Vigenère ciphers. Friedrich Kasiski was the first to publish a general method of deciphering a Vigenère cipher in 1863.
###### Source: [Wikipedia](https://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher)
### Transposition
In cryptography, a **transposition cipher** is a method of encryption by which the positions held by units of plaintext (which are commonly characters or groups of characters) are shifted according to a regular system, so that the ciphertext constitutes a permutation of the plaintext. That is, the order of the units is changed (the plaintext is reordered).<br>
Mathematically a bijective function is used on the characters' positions to encrypt and an inverse function to decrypt.

24
ciphers/rot13.py Normal file
View File

@ -0,0 +1,24 @@
def dencrypt(s, n):
out = ''
for c in s:
if c >= 'A' and c <= 'Z':
out += chr(ord('A') + (ord(c) - ord('A') + n) % 26)
elif c >= 'a' and c <= 'z':
out += chr(ord('a') + (ord(c) - ord('a') + n) % 26)
else:
out += c
return out
def main():
s0 = 'HELLO'
s1 = dencrypt(s0, 13)
print(s1) # URYYB
s2 = dencrypt(s1, 13)
print(s2) # HELLO
if __name__ == '__main__':
main()

View File

@ -7,40 +7,42 @@ class Node:
def __init__(self, label):
self.label = label
self.left = None
self.rigt = None
self.parent = None
self._parent = None
self._left = None
self._right = None
self.height = 0
def getLabel(self):
return self.label
@property
def right(self):
return self._right
def setLabel(self, label):
self.label = label
@right.setter
def right(self, node):
if node is not None:
node._parent = self
self._right = node
def getLeft(self):
return self.left
@property
def left(self):
return self._left
def setLeft(self, left):
self.left = left
@left.setter
def left(self, node):
if node is not None:
node._parent = self
self._left = node
def getRight(self):
return self.rigt
@property
def parent(self):
return self._parent
def setRight(self, right):
self.rigt = right
def getParent(self):
return self.parent
def setParent(self, parent):
self.parent = parent
def setHeight(self, height):
self.height = height
def getHeight(self, height):
return self.height
@parent.setter
def parent(self, node):
if node is not None:
self._parent = node
self.height = self.parent.height + 1
else:
self.height = 0
class AVL:
@ -51,8 +53,10 @@ class AVL:
def insert(self, value):
node = Node(value)
if self.root is None:
self.root = node
self.root.height = 0
self.size = 1
else:
# Same as Binary Tree
@ -64,63 +68,77 @@ class AVL:
dad_node = curr_node
if node.getLabel() < curr_node.getLabel():
curr_node = curr_node.getLeft()
if node.label < curr_node.label:
curr_node = curr_node.left
else:
curr_node = curr_node.getRight()
curr_node = curr_node.right
else:
if node.getLabel() < dad_node.getLabel():
dad_node.setLeft(node)
dad_node.setHeight(dad_node.getHeight() + 1)
if (dad_node.getRight().getHeight() -
dad_node.getLeft.getHeight() > 1):
self.rebalance(dad_node)
node.height = dad_node.height
dad_node.height += 1
if node.label < dad_node.label:
dad_node.left = node
else:
dad_node.setRight(node)
dad_node.setHeight(dad_node.getHeight() + 1)
if (dad_node.getRight().getHeight() -
dad_node.getLeft.getHeight() > 1):
self.rebalance(dad_node)
dad_node.right = node
self.rebalance(node)
self.size += 1
break
def rebalance(self, node):
if (node.getRight().getHeight() -
node.getLeft.getHeight() > 1):
if (node.getRight().getHeight() >
node.getLeft.getHeight()):
pass
n = node
while n is not None:
height_right = n.height
height_left = n.height
if n.right is not None:
height_right = n.right.height
if n.left is not None:
height_left = n.left.height
if abs(height_left - height_right) > 1:
if height_left > height_right:
left_child = n.left
if left_child is not None:
h_right = (right_child.right.height
if (right_child.right is not None) else 0)
h_left = (right_child.left.height
if (right_child.left is not None) else 0)
if (h_left > h_right):
self.rotate_left(n)
break
else:
pass
pass
elif (node.getRight().getHeight() -
node.getLeft.getHeight() > 2):
if (node.getRight().getHeight() >
node.getLeft.getHeight()):
pass
self.double_rotate_right(n)
break
else:
pass
pass
pass
right_child = n.right
if right_child is not None:
h_right = (right_child.right.height
if (right_child.right is not None) else 0)
h_left = (right_child.left.height
if (right_child.left is not None) else 0)
if (h_left > h_right):
self.double_rotate_left(n)
break
else:
self.rotate_right(n)
break
n = n.parent
def rotate_left(self, node):
# TODO: is this pythonic enought?
aux = node.getLabel()
node = aux.getRight()
node.setHeight(node.getHeight() - 1)
node.setLeft(Node(aux))
node.getLeft().setHeight(node.getHeight() + 1)
node.getRight().setHeight(node.getRight().getHeight() - 1)
aux = node.parent.label
node.parent.label = node.label
node.parent.right = Node(aux)
node.parent.right.height = node.parent.height + 1
node.parent.left = node.right
def rotate_right(self, node):
aux = node.getLabel()
node = aux.getLeft()
node.setHeight(node.getHeight() - 1)
node.setRight(Node(aux))
node.getLeft().setHeight(node.getHeight() + 1)
node.getLeft().setHeight(node.getLeft().getHeight() - 1)
aux = node.parent.label
node.parent.label = node.label
node.parent.left = Node(aux)
node.parent.left.height = node.parent.height + 1
node.parent.right = node.right
def double_rotate_left(self, node):
self.rotate_right(node.getRight().getRight())
@ -129,3 +147,34 @@ class AVL:
def double_rotate_right(self, node):
self.rotate_left(node.getLeft().getLeft())
self.rotate_right(node)
def empty(self):
if self.root is None:
return True
return False
def preShow(self, curr_node):
if curr_node is not None:
self.preShow(curr_node.left)
print(curr_node.label, end=" ")
self.preShow(curr_node.right)
def preorder(self, curr_node):
if curr_node is not None:
self.preShow(curr_node.left)
self.preShow(curr_node.right)
print(curr_node.label, end=" ")
def getRoot(self):
return self.root
t = AVL()
t.insert(1)
t.insert(2)
t.insert(3)
# t.preShow(t.root)
# print("\n")
# t.insert(4)
# t.insert(5)
# t.preShow(t.root)
# t.preorden(t.root)

1
data_structures/Arrays Normal file
View File

@ -0,0 +1 @@
Arrays implimentation using python programming.

View File

@ -0,0 +1,28 @@
class FenwickTree:
def __init__(self, SIZE): # create fenwick tree with size SIZE
self.Size = SIZE
self.ft = [0 for i in range (0,SIZE)]
def update(self, i, val): # update data (adding) in index i in O(lg N)
while (i < self.Size):
self.ft[i] += val
i += i & (-i)
def query(self, i): # query cumulative data from index 0 to i in O(lg N)
ret = 0
while (i > 0):
ret += self.ft[i]
i -= i & (-i)
return ret
if __name__ == '__main__':
f = FenwickTree(100)
f.update(1,20)
f.update(4,4)
print (f.query(1))
print (f.query(3))
print (f.query(4))
f.update(2,-5)
print (f.query(1))
print (f.query(3))

View File

@ -0,0 +1,90 @@
import math
class SegmentTree:
def __init__(self, N):
self.N = N
self.st = [0 for i in range(0,4*N)] # approximate the overall size of segment tree with array N
self.lazy = [0 for i in range(0,4*N)] # create array to store lazy update
self.flag = [0 for i in range(0,4*N)] # flag for lazy update
def left(self, idx):
return idx*2
def right(self, idx):
return idx*2 + 1
def build(self, idx, l, r, A):
if l==r:
self.st[idx] = A[l-1]
else :
mid = (l+r)//2
self.build(self.left(idx),l,mid, A)
self.build(self.right(idx),mid+1,r, A)
self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)])
# update with O(lg N) (Normal segment tree without lazy update will take O(Nlg N) for each update)
def update(self, idx, l, r, a, b, val): # update(1, 1, N, a, b, v) for update val v to [a,b]
if self.flag[idx] == True:
self.st[idx] = self.lazy[idx]
self.flag[idx] = False
if l!=r:
self.lazy[self.left(idx)] = self.lazy[idx]
self.lazy[self.right(idx)] = self.lazy[idx]
self.flag[self.left(idx)] = True
self.flag[self.right(idx)] = True
if r < a or l > b:
return True
if l >= a and r <= b :
self.st[idx] = val
if l!=r:
self.lazy[self.left(idx)] = val
self.lazy[self.right(idx)] = val
self.flag[self.left(idx)] = True
self.flag[self.right(idx)] = True
return True
mid = (l+r)//2
self.update(self.left(idx),l,mid,a,b,val)
self.update(self.right(idx),mid+1,r,a,b,val)
self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)])
return True
# query with O(lg N)
def query(self, idx, l, r, a, b): #query(1, 1, N, a, b) for query max of [a,b]
if self.flag[idx] == True:
self.st[idx] = self.lazy[idx]
self.flag[idx] = False
if l != r:
self.lazy[self.left(idx)] = self.lazy[idx]
self.lazy[self.right(idx)] = self.lazy[idx]
self.flag[self.left(idx)] = True
self.flag[self.right(idx)] = True
if r < a or l > b:
return -math.inf
if l >= a and r <= b:
return self.st[idx]
mid = (l+r)//2
q1 = self.query(self.left(idx),l,mid,a,b)
q2 = self.query(self.right(idx),mid+1,r,a,b)
return max(q1,q2)
def showData(self):
showList = []
for i in range(1,N+1):
showList += [self.query(1, 1, self.N, i, i)]
print (showList)
if __name__ == '__main__':
A = [1,2,-4,7,3,-5,6,11,-20,9,14,15,5,2,-8]
N = 15
segt = SegmentTree(N)
segt.build(1,1,N,A)
print (segt.query(1,1,N,4,6))
print (segt.query(1,1,N,7,11))
print (segt.query(1,1,N,7,12))
segt.update(1,1,N,1,3,111)
print (segt.query(1,1,N,1,15))
segt.update(1,1,N,7,8,235)
segt.showData()

View File

@ -0,0 +1,64 @@
import math
class SegmentTree:
def __init__(self, N):
self.N = N
self.st = [0 for i in range(0,4*N)] # approximate the overall size of segment tree with array N
def left(self, idx):
return idx*2
def right(self, idx):
return idx*2 + 1
def build(self, idx, l, r, A):
if l==r:
self.st[idx] = A[l-1]
else :
mid = (l+r)//2
self.build(self.left(idx),l,mid, A)
self.build(self.right(idx),mid+1,r, A)
self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)])
def update(self, idx, l, r, a, b, val): # update(1, 1, N, a, b, v) for update val v to [a,b]
if r < a or l > b:
return True
if l == r :
self.st[idx] = val
return True
mid = (l+r)//2
self.update(self.left(idx),l,mid,a,b,val)
self.update(self.right(idx),mid+1,r,a,b,val)
self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)])
return True
def query(self, idx, l, r, a, b): #query(1, 1, N, a, b) for query max of [a,b]
if r < a or l > b:
return -math.inf
if l >= a and r <= b:
return self.st[idx]
mid = (l+r)//2
q1 = self.query(self.left(idx),l,mid,a,b)
q2 = self.query(self.right(idx),mid+1,r,a,b)
return max(q1,q2)
def showData(self):
showList = []
for i in range(1,N+1):
showList += [self.query(1, 1, self.N, i, i)]
print (showList)
if __name__ == '__main__':
A = [1,2,-4,7,3,-5,6,11,-20,9,14,15,5,2,-8]
N = 15
segt = SegmentTree(N)
segt.build(1,1,N,A)
print (segt.query(1,1,N,4,6))
print (segt.query(1,1,N,7,11))
print (segt.query(1,1,N,7,12))
segt.update(1,1,N,1,3,111)
print (segt.query(1,1,N,1,15))
segt.update(1,1,N,7,8,235)
segt.showData()

View File

@ -1,103 +0,0 @@
'''
A binary search Tree
'''
class Node:
def __init__(self, label):
self.label = label
self.left = None
self.right = None
def getLabel(self):
return self.label
def setLabel(self, label):
self.label = label
def getLeft(self):
return self.left
def setLeft(self, left):
self.left = left
def getRight(self):
return self.right
def setRight(self, right):
self.right = right
class BinarySearchTree:
def __init__(self):
self.root = None
def insert(self, label):
# Create a new Node
node = Node(label)
if self.empty():
self.root = node
else:
dad_node = None
curr_node = self.root
while True:
if curr_node is not None:
dad_node = curr_node
if node.getLabel() < curr_node.getLabel():
curr_node = curr_node.getLeft()
else:
curr_node = curr_node.getRight()
else:
if node.getLabel() < dad_node.getLabel():
dad_node.setLeft(node)
else:
dad_node.setRight(node)
break
def empty(self):
if self.root is None:
return True
return False
def preShow(self, curr_node):
if curr_node is None:
print(curr_node.getLabel(), end=" ")
self.preShow(curr_node.getLeft())
self.preShow(curr_node.getRight())
def getRoot(self):
return self.root
'''
Example
8
/ \
3 10
/ \ \
1 6 14
/ \ /
4 7 13
'''
t = BinarySearchTree()
t.insert(8)
t.insert(3)
t.insert(1)
t.insert(6)
t.insert(4)
t.insert(7)
t.insert(10)
t.insert(14)
t.insert(13)
t.preShow(t.getRoot())

View File

@ -0,0 +1,257 @@
'''
A binary search Tree
'''
class Node:
def __init__(self, label, parent):
self.label = label
self.left = None
self.right = None
#Added in order to delete a node easier
self.parent = parent
def getLabel(self):
return self.label
def setLabel(self, label):
self.label = label
def getLeft(self):
return self.left
def setLeft(self, left):
self.left = left
def getRight(self):
return self.right
def setRight(self, right):
self.right = right
def getParent(self):
return self.parent
def setParent(self, parent):
self.parent = parent
class BinarySearchTree:
def __init__(self):
self.root = None
def insert(self, label):
# Create a new Node
new_node = Node(label, None)
# If Tree is empty
if self.empty():
self.root = new_node
else:
#If Tree is not empty
curr_node = self.root
#While we don't get to a leaf
while curr_node is not None:
#We keep reference of the parent node
parent_node = curr_node
#If node label is less than current node
if new_node.getLabel() < curr_node.getLabel():
#We go left
curr_node = curr_node.getLeft()
else:
#Else we go right
curr_node = curr_node.getRight()
#We insert the new node in a leaf
if new_node.getLabel() < parent_node.getLabel():
parent_node.setLeft(new_node)
else:
parent_node.setRight(new_node)
#Set parent to the new node
new_node.setParent(parent_node)
def delete(self, label):
if (not self.empty()):
#Look for the node with that label
node = self.getNode(label)
#If the node exists
if(node is not None):
#If it has no children
if(node.getLeft() is None and node.getRight() is None):
self.__reassignNodes(node, None)
node = None
#Has only right children
elif(node.getLeft() is None and node.getRight() is not None):
self.__reassignNodes(node, node.getRight())
#Has only left children
elif(node.getLeft() is not None and node.getRight() is None):
self.__reassignNodes(node, node.getLeft())
#Has two children
else:
#Gets the max value of the left branch
tmpNode = self.getMax(node.getLeft())
#Deletes the tmpNode
self.delete(tmpNode.getLabel())
#Assigns the value to the node to delete and keesp tree structure
node.setLabel(tmpNode.getLabel())
def getNode(self, label):
curr_node = None
#If the tree is not empty
if(not self.empty()):
#Get tree root
curr_node = self.getRoot()
#While we don't find the node we look for
#I am using lazy evaluation here to avoid NoneType Attribute error
while curr_node is not None and curr_node.getLabel() is not label:
#If node label is less than current node
if label < curr_node.getLabel():
#We go left
curr_node = curr_node.getLeft()
else:
#Else we go right
curr_node = curr_node.getRight()
return curr_node
def getMax(self, root = None):
if(root is not None):
curr_node = root
else:
#We go deep on the right branch
curr_node = self.getRoot()
if(not self.empty()):
while(curr_node.getRight() is not None):
curr_node = curr_node.getRight()
return curr_node
def getMin(self, root = None):
if(root is not None):
curr_node = root
else:
#We go deep on the left branch
curr_node = self.getRoot()
if(not self.empty()):
curr_node = self.getRoot()
while(curr_node.getLeft() is not None):
curr_node = curr_node.getLeft()
return curr_node
def empty(self):
if self.root is None:
return True
return False
def __InOrderTraversal(self, curr_node):
nodeList = []
if curr_node is not None:
nodeList.insert(0, curr_node)
nodeList = nodeList + self.__InOrderTraversal(curr_node.getLeft())
nodeList = nodeList + self.__InOrderTraversal(curr_node.getRight())
return nodeList
def getRoot(self):
return self.root
def __isRightChildren(self, node):
if(node == node.getParent().getRight()):
return True
return False
def __reassignNodes(self, node, newChildren):
if(newChildren is not None):
newChildren.setParent(node.getParent())
if(node.getParent() is not None):
#If it is the Right Children
if(self.__isRightChildren(node)):
node.getParent().setRight(newChildren)
else:
#Else it is the left children
node.getParent().setLeft(newChildren)
#This function traversal the tree. By default it returns an
#In order traversal list. You can pass a function to traversal
#The tree as needed by client code
def traversalTree(self, traversalFunction = None, root = None):
if(traversalFunction is None):
#Returns a list of nodes in preOrder by default
return self.__InOrderTraversal(self.root)
else:
#Returns a list of nodes in the order that the users wants to
return traversalFunction(self.root)
#Returns an string of all the nodes labels in the list
#In Order Traversal
def __str__(self):
list = self.__InOrderTraversal(self.root)
str = ""
for x in list:
str = str + " " + x.getLabel().__str__()
return str
def InPreOrder(curr_node):
nodeList = []
if curr_node is not None:
nodeList = nodeList + InPreOrder(curr_node.getLeft())
nodeList.insert(0, curr_node.getLabel())
nodeList = nodeList + InPreOrder(curr_node.getRight())
return nodeList
def testBinarySearchTree():
'''
Example
8
/ \
3 10
/ \ \
1 6 14
/ \ /
4 7 13
'''
'''
Example After Deletion
7
/ \
1 4
'''
t = BinarySearchTree()
t.insert(8)
t.insert(3)
t.insert(6)
t.insert(1)
t.insert(10)
t.insert(14)
t.insert(13)
t.insert(4)
t.insert(7)
#Prints all the elements of the list in order traversal
print(t.__str__())
if(t.getNode(6) is not None):
print("The label 6 exists")
else:
print("The label 6 doesn't exist")
if(t.getNode(-1) is not None):
print("The label -1 exists")
else:
print("The label -1 doesn't exist")
if(not t.empty()):
print("Max Value: ", t.getMax().getLabel())
print("Min Value: ", t.getMin().getLabel())
t.delete(13)
t.delete(10)
t.delete(8)
t.delete(3)
t.delete(6)
t.delete(14)
#Gets all the elements of the tree In pre order
#And it prints them
list = t.traversalTree(InPreOrder, t.root)
for x in list:
print(x)
if __name__ == "__main__":
testBinarySearchTree()

View File

@ -0,0 +1,61 @@
# Author: OMKAR PATHAK
class Graph():
def __init__(self):
self.vertex = {}
# for printing the Graph vertexes
def printGraph(self):
for i in self.vertex.keys():
print(i,' -> ', ' -> '.join([str(j) for j in self.vertex[i]]))
# for adding the edge beween two vertexes
def addEdge(self, fromVertex, toVertex):
# check if vertex is already present,
if fromVertex in self.vertex.keys():
self.vertex[fromVertex].append(toVertex)
else:
# else make a new vertex
self.vertex[fromVertex] = [toVertex]
def BFS(self, startVertex):
# Take a list for stoting already visited vertexes
visited = [False] * len(self.vertex)
# create a list to store all the vertexes for BFS
queue = []
# mark the source node as visited and enqueue it
visited[startVertex] = True
queue.append(startVertex)
while queue:
startVertex = queue.pop(0)
print(startVertex, end = ' ')
# mark all adjacent nodes as visited and print them
for i in self.vertex[startVertex]:
if visited[i] == False:
queue.append(i)
visited[i] = True
if __name__ == '__main__':
g = Graph()
g.addEdge(0, 1)
g.addEdge(0, 2)
g.addEdge(1, 2)
g.addEdge(2, 0)
g.addEdge(2, 3)
g.addEdge(3, 3)
g.printGraph()
print('BFS:')
g.BFS(2)
# OUTPUT:
# 0  ->  1 -> 2
# 1  ->  2
# 2  ->  0 -> 3
# 3  ->  3
# BFS:
# 2 0 3 1

View File

@ -1,72 +0,0 @@
class GRAPH:
"""docstring for GRAPH"""
def __init__(self, nodes):
self.nodes = nodes
self.graph = [[0]*nodes for i in range (nodes)]
self.visited = [0]*nodes
def show(self):
for i in self.graph:
for j in i:
print(j, end=' ')
print(' ')
def bfs(self,v):
visited = [False]*self.vertex
visited[v - 1] = True
print('%d visited' % (v))
queue = [v - 1]
while len(queue) > 0:
v = queue[0]
for u in range(self.vertex):
if self.graph[v][u] == 1:
if visited[u] is False:
visited[u] = True
queue.append(u)
print('%d visited' % (u +1))
queue.pop(0)
g = Graph(10)
g.add_edge(1,2)
g.add_edge(1,3)
g.add_edge(1,4)
g.add_edge(2,5)
g.add_edge(3,6)
g.add_edge(3,7)
g.add_edge(4,8)
g.add_edge(5,9)
g.add_edge(6,10)
g.bfs(4)
print(self.graph)
def add_edge(self, i, j):
self.graph[i][j]=1
self.graph[j][i]=1
def bfs(self, s):
queue = [s]
self.visited[s] = 1
while len(queue)!= 0:
x = queue.pop(0)
print(x)
for i in range(0, self.nodes):
if self.graph[x][i] == 1 and self.visited[i] == 0:
queue.append(i)
self.visited[i] = 1
n = int(input("Enter the number of Nodes : "))
g = GRAPH(n)
e = int(input("Enter the no of edges : "))
print("Enter the edges (u v)")
for i in range(0, e):
u ,v = map(int, raw_input().split())
g.add_edge(u, v)
s = int(input("Enter the source node :"))
g.bfs(s)

View File

@ -1,32 +0,0 @@
class GRAPH:
"""docstring for GRAPH"""
def __init__(self, nodes):
self.nodes=nodes
self.graph=[[0]*nodes for i in range (nodes)]
self.visited=[0]*nodes
def show(self):
print self.graph
def add_edge(self, i, j):
self.graph[i][j]=1
self.graph[j][i]=1
def dfs(self,s):
self.visited[s]=1
print(s)
for i in range(0,self.nodes):
if self.visited[i]==0 and self.graph[s][i]==1:
self.dfs(i)
n=int(input("Enter the number of Nodes : "))
g=GRAPH(n)
e=int(input("Enter the no of edges : "))
print("Enter the edges (u v)")
for i in range(0,e):
u,v=map(int, raw_input().split())
g.add_edge(u,v)
s=int(input("Enter the source node :"))
g.dfs(s)

View File

@ -0,0 +1,61 @@
# Author: OMKAR PATHAK
class Graph():
def __init__(self):
self.vertex = {}
# for printing the Graph vertexes
def printGraph(self):
print(self.vertex)
for i in self.vertex.keys():
print(i,' -> ', ' -> '.join([str(j) for j in self.vertex[i]]))
# for adding the edge beween two vertexes
def addEdge(self, fromVertex, toVertex):
# check if vertex is already present,
if fromVertex in self.vertex.keys():
self.vertex[fromVertex].append(toVertex)
else:
# else make a new vertex
self.vertex[fromVertex] = [toVertex]
def DFS(self):
# visited array for storing already visited nodes
visited = [False] * len(self.vertex)
# call the recursive helper function
for i in range(len(self.vertex)):
if visited[i] == False:
self.DFSRec(i, visited)
def DFSRec(self, startVertex, visited):
# mark start vertex as visited
visited[startVertex] = True
print(startVertex, end = ' ')
# Recur for all the vertexes that are adjacent to this node
for i in self.vertex.keys():
if visited[i] == False:
self.DFSRec(i, visited)
if __name__ == '__main__':
g = Graph()
g.addEdge(0, 1)
g.addEdge(0, 2)
g.addEdge(1, 2)
g.addEdge(2, 0)
g.addEdge(2, 3)
g.addEdge(3, 3)
g.printGraph()
print('DFS:')
g.DFS()
# OUTPUT:
# 0  ->  1 -> 2
# 1  ->  2
# 2  ->  0 -> 3
# 3  ->  3
# DFS:
# 0 1 2 3

View File

@ -0,0 +1,211 @@
# Title: Dijkstra's Algorithm for finding single source shortest path from scratch
# Author: Shubham Malik
# References: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
import math
import sys
# For storing the vertex set to retreive node with the lowest distance
class PriorityQueue:
# Based on Min Heap
def __init__(self):
self.cur_size = 0
self.array = []
self.pos = {} # To store the pos of node in array
def isEmpty(self):
return self.cur_size == 0
def min_heapify(self, idx):
lc = self.left(idx)
rc = self.right(idx)
if lc < self.cur_size and self.array(lc)[0] < self.array(idx)[0]:
smallest = lc
else:
smallest = idx
if rc < self.cur_size and self.array(rc)[0] < self.array(smallest)[0]:
smallest = rc
if smallest != idx:
self.swap(idx, smallest)
self.min_heapify(smallest)
def insert(self, tup):
# Inserts a node into the Priority Queue
self.pos[tup[1]] = self.cur_size
self.cur_size += 1
self.array.append((sys.maxsize, tup[1]))
self.decrease_key((sys.maxsize, tup[1]), tup[0])
def extract_min(self):
# Removes and returns the min element at top of priority queue
min_node = self.array[0][1]
self.array[0] = self.array[self.cur_size - 1]
self.cur_size -= 1
self.min_heapify(1)
del self.pos[min_node]
return min_node
def left(self, i):
# returns the index of left child
return 2 * i + 1
def right(self, i):
# returns the index of right child
return 2 * i + 2
def par(self, i):
# returns the index of parent
return math.floor(i / 2)
def swap(self, i, j):
# swaps array elements at indices i and j
# update the pos{}
self.pos[self.array[i][1]] = j
self.pos[self.array[j][1]] = i
temp = self.array[i]
self.array[i] = self.array[j]
self.array[j] = temp
def decrease_key(self, tup, new_d):
idx = self.pos[tup[1]]
# assuming the new_d is atmost old_d
self.array[idx] = (new_d, tup[1])
while idx > 0 and self.array[self.par(idx)][0] > self.array[idx][0]:
self.swap(idx, self.par(idx))
idx = self.par(idx)
class Graph:
def __init__(self, num):
self.adjList = {} # To store graph: u -> (v,w)
self.num_nodes = num # Number of nodes in graph
# To store the distance from source vertex
self.dist = [0] * self.num_nodes
self.par = [-1] * self.num_nodes # To store the path
def add_edge(self, u, v, w):
# Edge going from node u to v and v to u with weight w
# u (w)-> v, v (w) -> u
# Check if u already in graph
if u in self.adjList.keys():
self.adjList[u].append((v, w))
else:
self.adjList[u] = [(v, w)]
# Assuming undirected graph
if v in self.adjList.keys():
self.adjList[v].append((u, w))
else:
self.adjList[v] = [(u, w)]
def show_graph(self):
# u -> v(w)
for u in self.adjList:
print(u, '->', ' -> '.join(str("{}({})".format(v, w))
for v, w in self.adjList[u]))
def dijkstra(self, src):
# Flush old junk values in par[]
self.par = [-1] * self.num_nodes
# src is the source node
self.dist[src] = 0
Q = PriorityQueue()
Q.insert((0, src)) # (dist from src, node)
for u in self.adjList.keys():
if u != src:
self.dist[u] = sys.maxsize # Infinity
self.par[u] = -1
while not Q.isEmpty():
u = Q.extract_min() # Returns node with the min dist from source
# Update the distance of all the neighbours of u and
# if their prev dist was INFINITY then push them in Q
for v, w in self.adjList[u]:
new_dist = self.dist[u] + w
if self.dist[v] > new_dist:
if self.dist[v] == sys.maxsize:
Q.insert((new_dist, v))
else:
Q.decrease_key((self.dist[v], v), new_dist)
self.dist[v] = new_dist
self.par[v] = u
# Show the shortest distances from src
self.show_distances(src)
def show_distances(self, src):
print("Distance from node: {}".format(src))
for u in range(self.num_nodes):
print('Node {} has distance: {}'.format(u, self.dist[u]))
def show_path(self, src, dest):
# To show the shortest path from src to dest
# WARNING: Use it *after* calling dijkstra
path = []
cost = 0
temp = dest
# Backtracking from dest to src
while self.par[temp] != -1:
path.append(temp)
if temp != src:
for v, w in self.adjList[temp]:
if v == self.par[temp]:
cost += w
break
temp = self.par[temp]
path.append(src)
path.reverse()
print('----Path to reach {} from {}----'.format(dest, src))
for u in path:
print('{}'.format(u), end=' ')
if u != dest:
print('-> ', end='')
print('\nTotal cost of path: ', cost)
if __name__ == '__main__':
graph = Graph(9)
graph.add_edge(0, 1, 4)
graph.add_edge(0, 7, 8)
graph.add_edge(1, 2, 8)
graph.add_edge(1, 7, 11)
graph.add_edge(2, 3, 7)
graph.add_edge(2, 8, 2)
graph.add_edge(2, 5, 4)
graph.add_edge(3, 4, 9)
graph.add_edge(3, 5, 14)
graph.add_edge(4, 5, 10)
graph.add_edge(5, 6, 2)
graph.add_edge(6, 7, 1)
graph.add_edge(6, 8, 6)
graph.add_edge(7, 8, 7)
graph.show_graph()
graph.dijkstra(0)
graph.show_path(0, 4)
# OUTPUT
# 0 -> 1(4) -> 7(8)
# 1 -> 0(4) -> 2(8) -> 7(11)
# 7 -> 0(8) -> 1(11) -> 6(1) -> 8(7)
# 2 -> 1(8) -> 3(7) -> 8(2) -> 5(4)
# 3 -> 2(7) -> 4(9) -> 5(14)
# 8 -> 2(2) -> 6(6) -> 7(7)
# 5 -> 2(4) -> 3(14) -> 4(10) -> 6(2)
# 4 -> 3(9) -> 5(10)
# 6 -> 5(2) -> 7(1) -> 8(6)
# Distance from node: 0
# Node 0 has distance: 0
# Node 1 has distance: 4
# Node 2 has distance: 12
# Node 3 has distance: 19
# Node 4 has distance: 21
# Node 5 has distance: 11
# Node 6 has distance: 9
# Node 7 has distance: 8
# Node 8 has distance: 14
# ----Path to reach 4 from 0----
# 0 -> 7 -> 6 -> 5 -> 4
# Total cost of path: 21

View File

@ -3,22 +3,15 @@ class Node:#create a Node
self.data=data#given data
self.next=None#given next to None
class Linked_List:
pass
def insert_tail(Head,data):#insert the data at tail
tamp=Head#create a tamp as a head
if(tamp==None):#if linkedlist is empty
newNod=Node()#create newNode Node type and given data and next
newNod.data=data
newNod.next=None
Head=newNod
def insert_tail(Head,data):
if(Head.next is None):
Head.next = Node(data)
else:
while tamp.next!=None:#find the last Node
tamp=tamp.next
newNod = Node()#create a new node
newNod.data = data
newNod.next = None
tamp.next=newNod#put the newnode into last node
return Head#return first node of linked list
insert_tail(Head.next, data)
def insert_head(Head,data):
tamp = Head
if (tamp == None):
@ -32,16 +25,18 @@ class Linked_List:
newNod.next = Head#put the Head at NewNode Next
Head=newNod#make a NewNode to Head
return Head
def Print(Head):#print every node data
tamp=Node()
def printList(Head):#print every node data
tamp=Head
while tamp!=None:
print(tamp.data)
tamp=tamp.next
def delete_head(Head):#delete from head
if Head!=None:
Head=Head.next
return Head#return new Head
def delete_tail(Head):#delete from tail
if Head!=None:
tamp = Node()
@ -50,12 +45,22 @@ class Linked_List:
tamp = tamp.next
tamp.next=None#delete the last element by give next None to 2nd last Element
return Head
def isEmpty(Head):
if(Head==None):#check Head is None or Not
return True#return Ture if list is empty
else:
return False#check False if it's not empty
return Head is None #Return if Head is none
def reverse(Head):
prev = None
current = Head
while(current):
# Store the current node's next node.
next_node = current.next
# Make the current node's next point backwards
current.next = prev
# Make the previous node be the current node
prev = current
# Make the current node the next node (to progress iteration)
current = next_node
# Return prev in order to put the head at the end
Head = prev

View File

@ -0,0 +1,39 @@
# Python code to demonstrate working of
# extend(), extendleft(), rotate(), reverse()
# importing "collections" for deque operations
import collections
# initializing deque
de = collections.deque([1, 2, 3,])
# using extend() to add numbers to right end
# adds 4,5,6 to right end
de.extend([4,5,6])
# printing modified deque
print ("The deque after extending deque at end is : ")
print (de)
# using extendleft() to add numbers to left end
# adds 7,8,9 to right end
de.extendleft([7,8,9])
# printing modified deque
print ("The deque after extending deque at beginning is : ")
print (de)
# using rotate() to rotate the deque
# rotates by 3 to left
de.rotate(-3)
# printing modified deque
print ("The deque after rotating deque is : ")
print (de)
# using reverse() to reverse the deque
de.reverse()
# printing modified deque
print ("The deque after reversing deque is : ")
print (de)

View File

@ -1,27 +0,0 @@
# Author: OMKAR PATHAK
import Stack
def parseParenthesis(string):
balanced = 1
index = 0
myStack = Stack.Stack(len(string))
while (index < len(string)) and (balanced == 1):
check = string[index]
if check == '(':
myStack.push(check)
else:
if myStack.isEmpty():
balanced = 0
else:
myStack.pop()
index += 1
if balanced == 1 and myStack.isEmpty():
return True
else:
return False
if __name__ == '__main__':
print(parseParenthesis('((()))')) # True
print(parseParenthesis('((())')) # False

View File

@ -1,48 +0,0 @@
# Author: OMKAR PATHAK
import Stack
def isOperand(char):
return (ord(char) >= ord('a') and ord(char) <= ord('z')) or (ord(char) >= ord('A') and ord(char) <= ord('Z'))
def precedence(char):
if char == '+' or char == '-':
return 1
elif char == '*' or char == '/':
return 2
elif char == '^':
return 3
else:
return -1
def infixToPostfix(myExp, myStack):
postFix = []
for i in range(len(myExp)):
if (isOperand(myExp[i])):
postFix.append(myExp[i])
elif(myExp[i] == '('):
myStack.push(myExp[i])
elif(myExp[i] == ')'):
topOperator = myStack.pop()
while(not myStack.isEmpty() and topOperator != '('):
postFix.append(topOperator)
topOperator = myStack.pop()
else:
while (not myStack.isEmpty()) and (precedence(myExp[i]) <= precedence(myStack.peek())):
postFix.append(myStack.pop())
myStack.push(myExp[i])
while(not myStack.isEmpty()):
postFix.append(myStack.pop())
return ' '.join(postFix)
if __name__ == '__main__':
myExp = 'a+b*(c^d-e)^(f+g*h)-i'
myExp = [i for i in myExp]
print('Infix:',' '.join(myExp))
myStack = Stack.Stack(len(myExp))
print('Postfix:',infixToPostfix(myExp, myStack))
# OUTPUT:
# Infix: a + b * ( c ^ d - e ) ^ ( f + g * h ) - i
# Postfix: a b c d ^ e - f g h * + ^ * + i -

View File

@ -1,50 +0,0 @@
# Author: OMKAR PATHAK
class Stack(object):
def __init__(self, limit = 10):
self.stack = []
self.limit = limit
# for printing the stack contents
def __str__(self):
return ' '.join([str(i) for i in self.stack])
# for pushing an element on to the stack
def push(self, data):
if len(self.stack) >= self.limit:
print('Stack Overflow')
else:
self.stack.append(data)
# for popping the uppermost element
def pop(self):
if len(self.stack) <= 0:
return -1
else:
return self.stack.pop()
# for peeking the top-most element of the stack
def peek(self):
if len(self.stack) <= 0:
return -1
else:
return self.stack[len(self.stack) - 1]
# to check if stack is empty
def isEmpty(self):
return self.stack == []
# for checking the size of stack
def size(self):
return len(self.stack)
if __name__ == '__main__':
myStack = Stack()
for i in range(10):
myStack.push(i)
print(myStack)
myStack.pop() # popping the top element
print(myStack)
myStack.peek() # printing the top element
myStack.isEmpty()
myStack.size()

View File

@ -0,0 +1,21 @@
from Stack import Stack
__author__ = 'Omkar Pathak'
def balanced_parentheses(parentheses):
""" Use a stack to check if a string of parentheses are balanced."""
stack = Stack(len(parentheses))
for parenthesis in parentheses:
if parenthesis == '(':
stack.push(parenthesis)
elif parenthesis == ')':
stack.pop()
return not stack.is_empty()
if __name__ == '__main__':
examples = ['((()))', '((())']
print('Balanced parentheses demonstration:\n')
for example in examples:
print(example + ': ' + str(balanced_parentheses(example)))

View File

@ -0,0 +1,62 @@
import string
from Stack import Stack
__author__ = 'Omkar Pathak'
def is_operand(char):
return char in string.ascii_letters or char in string.digits
def precedence(char):
""" Return integer value representing an operator's precedence, or
order of operation.
https://en.wikipedia.org/wiki/Order_of_operations
"""
dictionary = {'+': 1, '-': 1,
'*': 2, '/': 2,
'^': 3}
return dictionary.get(char, -1)
def infix_to_postfix(expression):
""" Convert infix notation to postfix notation using the Shunting-yard
algorithm.
https://en.wikipedia.org/wiki/Shunting-yard_algorithm
https://en.wikipedia.org/wiki/Infix_notation
https://en.wikipedia.org/wiki/Reverse_Polish_notation
"""
stack = Stack(len(expression))
postfix = []
for char in expression:
if is_operand(char):
postfix.append(char)
elif char not in {'(', ')'}:
while (not stack.is_empty()
and precedence(char) <= precedence(stack.peek())):
postfix.append(stack.pop())
stack.push(char)
elif char == '(':
stack.push(char)
elif char == ')':
while not stack.is_empty() and stack.peek() != '(':
postfix.append(stack.pop())
# Pop '(' from stack. If there is no '(', there is a mismatched
# parentheses.
if stack.peek() != '(':
raise ValueError('Mismatched parentheses')
stack.pop()
while not stack.is_empty():
postfix.append(stack.pop())
return ' '.join(postfix)
if __name__ == '__main__':
expression = 'a+b*(c^d-e)^(f+g*h)-i'
print('Infix to Postfix Notation demonstration:\n')
print('Infix notation: ' + expression)
print('Postfix notation: ' + infix_to_postfix(expression))

View File

@ -0,0 +1,16 @@
# Function to print element and NGE pair for all elements of list
def printNGE(arr):
for i in range(0, len(arr), 1):
next = -1
for j in range(i+1, len(arr), 1):
if arr[i] < arr[j]:
next = arr[j]
break
print(str(arr[i]) + " -- " + str(next))
# Driver program to test above function
arr = [11,13,21,3]
printNGE(arr)

View File

@ -0,0 +1,68 @@
__author__ = 'Omkar Pathak'
class Stack(object):
""" A stack is an abstract data type that serves as a collection of
elements with two principal operations: push() and pop(). push() adds an
element to the top of the stack, and pop() removes an element from the top
of a stack. The order in which elements come off of a stack are
Last In, First Out (LIFO).
https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
"""
def __init__(self, limit=10):
self.stack = []
self.limit = limit
def __bool__(self):
return not bool(self.stack)
def __str__(self):
return str(self.stack)
def push(self, data):
""" Push an element to the top of the stack."""
if len(self.stack) >= self.limit:
raise StackOverflowError
self.stack.append(data)
def pop(self):
""" Pop an element off of the top of the stack."""
if self.stack:
return self.stack.pop()
else:
raise IndexError('pop from an empty stack')
def peek(self):
""" Peek at the top-most element of the stack."""
if self.stack:
return self.stack[-1]
def is_empty(self):
""" Check if a stack is empty."""
return not bool(self.stack)
def size(self):
""" Return the size of the stack."""
return len(self.stack)
class StackOverflowError(BaseException):
pass
if __name__ == '__main__':
stack = Stack()
for i in range(10):
stack.push(i)
print('Stack demonstration:\n')
print('Initial stack: ' + str(stack))
print('pop(): ' + str(stack.pop()))
print('After pop(), the stack is now: ' + str(stack))
print('peek(): ' + str(stack.peek()))
stack.push(100)
print('After push(100), the stack is now: ' + str(stack))
print('is_empty(): ' + str(stack.is_empty()))
print('size(): ' + str(stack.size()))

View File

View File

@ -0,0 +1,77 @@
from union_find import UnionFind
import unittest
class TestUnionFind(unittest.TestCase):
def test_init_with_valid_size(self):
uf = UnionFind(5)
self.assertEqual(uf.size, 5)
def test_init_with_invalid_size(self):
with self.assertRaises(ValueError):
uf = UnionFind(0)
with self.assertRaises(ValueError):
uf = UnionFind(-5)
def test_union_with_valid_values(self):
uf = UnionFind(10)
for i in range(11):
for j in range(11):
uf.union(i, j)
def test_union_with_invalid_values(self):
uf = UnionFind(10)
with self.assertRaises(ValueError):
uf.union(-1, 1)
with self.assertRaises(ValueError):
uf.union(11, 1)
def test_same_set_with_valid_values(self):
uf = UnionFind(10)
for i in range(11):
for j in range(11):
if i == j:
self.assertTrue(uf.same_set(i, j))
else:
self.assertFalse(uf.same_set(i, j))
uf.union(1, 2)
self.assertTrue(uf.same_set(1, 2))
uf.union(3, 4)
self.assertTrue(uf.same_set(3, 4))
self.assertFalse(uf.same_set(1, 3))
self.assertFalse(uf.same_set(1, 4))
self.assertFalse(uf.same_set(2, 3))
self.assertFalse(uf.same_set(2, 4))
uf.union(1, 3)
self.assertTrue(uf.same_set(1, 3))
self.assertTrue(uf.same_set(1, 4))
self.assertTrue(uf.same_set(2, 3))
self.assertTrue(uf.same_set(2, 4))
uf.union(4, 10)
self.assertTrue(uf.same_set(1, 10))
self.assertTrue(uf.same_set(2, 10))
self.assertTrue(uf.same_set(3, 10))
self.assertTrue(uf.same_set(4, 10))
def test_same_set_with_invalid_values(self):
uf = UnionFind(10)
with self.assertRaises(ValueError):
uf.same_set(-1, 1)
with self.assertRaises(ValueError):
uf.same_set(11, 0)
if __name__ == '__main__':
unittest.main()

View File

@ -0,0 +1,87 @@
class UnionFind():
"""
https://en.wikipedia.org/wiki/Disjoint-set_data_structure
The union-find is a disjoint-set data structure
You can merge two sets and tell if one set belongs to
another one.
It's used on the Kruskal Algorithm
(https://en.wikipedia.org/wiki/Kruskal%27s_algorithm)
The elements are in range [0, size]
"""
def __init__(self, size):
if size <= 0:
raise ValueError("size should be greater than 0")
self.size = size
# The below plus 1 is because we are using elements
# in range [0, size]. It makes more sense.
# Every set begins with only itself
self.root = [i for i in range(size+1)]
# This is used for heuristic union by rank
self.weight = [0 for i in range(size+1)]
def union(self, u, v):
"""
Union of the sets u and v.
Complexity: log(n).
Amortized complexity: < 5 (it's very fast).
"""
self._validate_element_range(u, "u")
self._validate_element_range(v, "v")
if u == v:
return
# Using union by rank will guarantee the
# log(n) complexity
rootu = self._root(u)
rootv = self._root(v)
weight_u = self.weight[rootu]
weight_v = self.weight[rootv]
if weight_u >= weight_v:
self.root[rootv] = rootu
if weight_u == weight_v:
self.weight[rootu] += 1
else:
self.root[rootu] = rootv
def same_set(self, u, v):
"""
Return true if the elements u and v belongs to
the same set
"""
self._validate_element_range(u, "u")
self._validate_element_range(v, "v")
return self._root(u) == self._root(v)
def _root(self, u):
"""
Get the element set root.
This uses the heuristic path compression
See wikipedia article for more details.
"""
if u != self.root[u]:
self.root[u] = self._root(self.root[u])
return self.root[u]
def _validate_element_range(self, u, element_name):
"""
Raises ValueError if element is not in range
"""
if u < 0 or u > self.size:
msg = ("element {0} with value {1} "
"should be in range [0~{2}]")\
.format(element_name, u, self.size)
raise ValueError(msg)

View File

@ -0,0 +1,37 @@
import math
class Graph:
def __init__(self, N = 0): # a graph with Node 0,1,...,N-1
self.N = N
self.W = [[math.inf for j in range(0,N)] for i in range(0,N)] # adjacency matrix for weight
self.dp = [[math.inf for j in range(0,N)] for i in range(0,N)] # dp[i][j] stores minimum distance from i to j
def addEdge(self, u, v, w):
self.dp[u][v] = w;
def floyd_warshall(self):
for k in range(0,self.N):
for i in range(0,self.N):
for j in range(0,self.N):
self.dp[i][j] = min(self.dp[i][j], self.dp[i][k] + self.dp[k][j])
def showMin(self, u, v):
return self.dp[u][v]
if __name__ == '__main__':
graph = Graph(5)
graph.addEdge(0,2,9)
graph.addEdge(0,4,10)
graph.addEdge(1,3,5)
graph.addEdge(2,3,7)
graph.addEdge(3,0,10)
graph.addEdge(3,1,2)
graph.addEdge(3,2,1)
graph.addEdge(3,4,6)
graph.addEdge(4,1,3)
graph.addEdge(4,2,4)
graph.addEdge(4,3,9)
graph.floyd_warshall()
graph.showMin(1,4)
graph.showMin(0,3)

View File

@ -0,0 +1,25 @@
"""
You have m types of coins available in infinite quantities
where the value of each coins is given in the array S=[S0,... Sm-1]
Can you determine number of ways of making change for n units using
the given types of coins?
https://www.hackerrank.com/challenges/coin-change/problem
"""
def dp_count(S, m, n):
table = [0] * (n + 1)
# Base case (If given value is 0)
table[0] = 1
# Pick all coins one by one and update table[] values
# after the index greater than or equal to the value of the
# picked coin
for i in range(0, m):
for j in range(S[i], n + 1):
table[j] += table[j - S[i]]
return table[n]
if __name__ == '__main__':
print dp_count([1, 2, 3], 3, 4) # answer 4
print dp_count([2, 5, 3, 6], 4, 10) # answer 5

View File

@ -0,0 +1,42 @@
"""
This program calculates the nth Fibonacci number in O(log(n)).
It's possible to calculate F(1000000) in less than a second.
"""
import sys
# returns F(n)
def fibonacci(n: int):
if n < 0:
raise ValueError("Negative arguments are not supported")
return _fib(n)[0]
# returns (F(n), F(n-1))
def _fib(n: int):
if n == 0:
# (F(0), F(1))
return (0, 1)
else:
# F(2n) = F(n)[2F(n+1) F(n)]
# F(2n+1) = F(n+1)^2+F(n)^2
a, b = _fib(n // 2)
c = a * (b * 2 - a)
d = a * a + b * b
if n % 2 == 0:
return (c, d)
else:
return (d, c + d)
if __name__ == "__main__":
args = sys.argv[1:]
if len(args) != 1:
print("Too few or too much parameters given.")
exit(1)
try:
n = int(args[0])
except ValueError:
print("Could not convert data to an integer.")
exit(1)
print("F(%d) = %d" % (n, fibonacci(n)))

View File

@ -30,7 +30,7 @@ if __name__ == '__main__':
import sys
print("\n********* Fibonacci Series Using Dynamic Programming ************\n")
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input

View File

@ -0,0 +1,40 @@
#############################
# Author: Aravind Kashyap
# File: lis.py
# comments: This programme outputs the Longest Strictly Increasing Subsequence in O(NLogN)
# Where N is the Number of elements in the list
#############################
def CeilIndex(v,l,r,key):
while r-l > 1:
m = (l + r)/2
if v[m] >= key:
r = m
else:
l = m
return r
def LongestIncreasingSubsequenceLength(v):
if(len(v) == 0):
return 0
tail = [0]*len(v)
length = 1
tail[0] = v[0]
for i in range(1,len(v)):
if v[i] < tail[0]:
tail[0] = v[i]
elif v[i] > tail[length-1]:
tail[length] = v[i]
length += 1
else:
tail[CeilIndex(tail,-1,length-1,v[i])] = v[i]
return length
v = [2, 5, 3, 7, 11, 8, 10, 13, 6]
print LongestIncreasingSubsequenceLength(v)

View File

@ -0,0 +1,172 @@
'''README, Author - Anurag Kumar(mailto:anuragkumarak95@gmail.com)
Requirements:
- sklearn
- numpy
- matplotlib
Python:
- 3.5
Inputs:
- X , a 2D numpy array of features.
- k , number of clusters to create.
- initial_centroids , initial centroid values generated by utility function(mentioned in usage).
- maxiter , maximum number of iterations to process.
- heterogeneity , empty list that will be filled with hetrogeneity values if passed to kmeans func.
Usage:
1. define 'k' value, 'X' features array and 'hetrogeneity' empty list
2. create initial_centroids,
initial_centroids = get_initial_centroids(
X,
k,
seed=0 # seed value for initial centroid generation, None for randomness(default=None)
)
3. find centroids and clusters using kmeans function.
centroids, cluster_assignment = kmeans(
X,
k,
initial_centroids,
maxiter=400,
record_heterogeneity=heterogeneity,
verbose=True # whether to print logs in console or not.(default=False)
)
4. Plot the loss function, hetrogeneity values for every iteration saved in hetrogeneity list.
plot_heterogeneity(
heterogeneity,
k
)
5. Have fun..
'''
from sklearn.metrics import pairwise_distances
import numpy as np
TAG = 'K-MEANS-CLUST/ '
def get_initial_centroids(data, k, seed=None):
'''Randomly choose k data points as initial centroids'''
if seed is not None: # useful for obtaining consistent results
np.random.seed(seed)
n = data.shape[0] # number of data points
# Pick K indices from range [0, N).
rand_indices = np.random.randint(0, n, k)
# Keep centroids as dense format, as many entries will be nonzero due to averaging.
# As long as at least one document in a cluster contains a word,
# it will carry a nonzero weight in the TF-IDF vector of the centroid.
centroids = data[rand_indices,:]
return centroids
def centroid_pairwise_dist(X,centroids):
return pairwise_distances(X,centroids,metric='euclidean')
def assign_clusters(data, centroids):
# Compute distances between each data point and the set of centroids:
# Fill in the blank (RHS only)
distances_from_centroids = centroid_pairwise_dist(data,centroids)
# Compute cluster assignments for each data point:
# Fill in the blank (RHS only)
cluster_assignment = np.argmin(distances_from_centroids,axis=1)
return cluster_assignment
def revise_centroids(data, k, cluster_assignment):
new_centroids = []
for i in range(k):
# Select all data points that belong to cluster i. Fill in the blank (RHS only)
member_data_points = data[cluster_assignment==i]
# Compute the mean of the data points. Fill in the blank (RHS only)
centroid = member_data_points.mean(axis=0)
new_centroids.append(centroid)
new_centroids = np.array(new_centroids)
return new_centroids
def compute_heterogeneity(data, k, centroids, cluster_assignment):
heterogeneity = 0.0
for i in range(k):
# Select all data points that belong to cluster i. Fill in the blank (RHS only)
member_data_points = data[cluster_assignment==i, :]
if member_data_points.shape[0] > 0: # check if i-th cluster is non-empty
# Compute distances from centroid to data points (RHS only)
distances = pairwise_distances(member_data_points, [centroids[i]], metric='euclidean')
squared_distances = distances**2
heterogeneity += np.sum(squared_distances)
return heterogeneity
from matplotlib import pyplot as plt
def plot_heterogeneity(heterogeneity, k):
plt.figure(figsize=(7,4))
plt.plot(heterogeneity, linewidth=4)
plt.xlabel('# Iterations')
plt.ylabel('Heterogeneity')
plt.title('Heterogeneity of clustering over time, K={0:d}'.format(k))
plt.rcParams.update({'font.size': 16})
plt.show()
def kmeans(data, k, initial_centroids, maxiter=500, record_heterogeneity=None, verbose=False):
'''This function runs k-means on given data and initial set of centroids.
maxiter: maximum number of iterations to run.(default=500)
record_heterogeneity: (optional) a list, to store the history of heterogeneity as function of iterations
if None, do not store the history.
verbose: if True, print how many data points changed their cluster labels in each iteration'''
centroids = initial_centroids[:]
prev_cluster_assignment = None
for itr in range(maxiter):
if verbose:
print(itr, end='')
# 1. Make cluster assignments using nearest centroids
cluster_assignment = assign_clusters(data,centroids)
# 2. Compute a new centroid for each of the k clusters, averaging all data points assigned to that cluster.
centroids = revise_centroids(data,k, cluster_assignment)
# Check for convergence: if none of the assignments changed, stop
if prev_cluster_assignment is not None and \
(prev_cluster_assignment==cluster_assignment).all():
break
# Print number of new assignments
if prev_cluster_assignment is not None:
num_changed = np.sum(prev_cluster_assignment!=cluster_assignment)
if verbose:
print(' {0:5d} elements changed their cluster assignment.'.format(num_changed))
# Record heterogeneity convergence metric
if record_heterogeneity is not None:
# YOUR CODE HERE
score = compute_heterogeneity(data,k,centroids,cluster_assignment)
record_heterogeneity.append(score)
prev_cluster_assignment = cluster_assignment[:]
return centroids, cluster_assignment
# Mock test below
if False: # change to true to run this test case.
import sklearn.datasets as ds
dataset = ds.load_iris()
k = 3
heterogeneity = []
initial_centroids = get_initial_centroids(dataset['data'], k, seed=0)
centroids, cluster_assignment = kmeans(dataset['data'], k, initial_centroids, maxiter=400,
record_heterogeneity=heterogeneity, verbose=True)
plot_heterogeneity(heterogeneity, k)

View File

@ -0,0 +1,34 @@
__author__ = "Tobias Carryer"
from time import time
class LinearCongruentialGenerator(object):
"""
A pseudorandom number generator.
"""
def __init__( self, multiplier, increment, modulo, seed=int(time()) ):
"""
These parameters are saved and used when nextNumber() is called.
modulo is the largest number that can be generated (exclusive). The most
efficent values are powers of 2. 2^32 is a common value.
"""
self.multiplier = multiplier
self.increment = increment
self.modulo = modulo
self.seed = seed
def next_number( self ):
"""
The smallest number that can be generated is zero.
The largest number that can be generated is modulo-1. modulo is set in the constructor.
"""
self.seed = (self.multiplier * self.seed + self.increment) % self.modulo
return self.seed
if __name__ == "__main__":
# Show the LCG in action.
lcg = LinearCongruentialGenerator(1664525, 1013904223, 2<<31)
while True :
print lcg.next_number()

View File

@ -0,0 +1,49 @@
"""
* Binary Exponentiation for Powers
* This is a method to find a^b in a time complexity of O(log b)
* This is one of the most commonly used methods of finding powers.
* Also useful in cases where solution to (a^b)%c is required,
* where a,b,c can be numbers over the computers calculation limits.
* Done using iteration, can also be done using recursion
* @author chinmoy159
* @version 1.0 dated 10/08/2017
"""
def b_expo(a, b):
res = 1
while b > 0:
if b&1:
res *= a
a *= a
b >>= 1
return res
def b_expo_mod(a, b, c):
res = 1
while b > 0:
if b&1:
res = ((res%c) * (a%c)) % c
a *= a
b >>= 1
return res
"""
* Wondering how this method works !
* It's pretty simple.
* Let's say you need to calculate a ^ b
* RULE 1 : a ^ b = (a*a) ^ (b/2) ---- example : 4 ^ 4 = (4*4) ^ (4/2) = 16 ^ 2
* RULE 2 : IF b is ODD, then ---- a ^ b = a * (a ^ (b - 1)) :: where (b - 1) is even.
* Once b is even, repeat the process to get a ^ b
* Repeat the process till b = 1 OR b = 0, because a^1 = a AND a^0 = 1
*
* As far as the modulo is concerned,
* the fact : (a*b) % c = ((a%c) * (b%c)) % c
* Now apply RULE 1 OR 2 whichever is required.
"""

View File

@ -0,0 +1,50 @@
"""
* Binary Exponentiation with Multiplication
* This is a method to find a*b in a time complexity of O(log b)
* This is one of the most commonly used methods of finding result of multiplication.
* Also useful in cases where solution to (a*b)%c is required,
* where a,b,c can be numbers over the computers calculation limits.
* Done using iteration, can also be done using recursion
* @author chinmoy159
* @version 1.0 dated 10/08/2017
"""
def b_expo(a, b):
res = 0
while b > 0:
if b&1:
res += a
a += a
b >>= 1
return res
def b_expo_mod(a, b, c):
res = 0
while b > 0:
if b&1:
res = ((res%c) + (a%c)) % c
a += a
b >>= 1
return res
"""
* Wondering how this method works !
* It's pretty simple.
* Let's say you need to calculate a ^ b
* RULE 1 : a * b = (a+a) * (b/2) ---- example : 4 * 4 = (4+4) * (4/2) = 8 * 2
* RULE 2 : IF b is ODD, then ---- a * b = a + (a * (b - 1)) :: where (b - 1) is even.
* Once b is even, repeat the process to get a * b
* Repeat the process till b = 1 OR b = 0, because a*1 = a AND a*0 = 0
*
* As far as the modulo is concerned,
* the fact : (a+b) % c = ((a%c) + (b%c)) % c
* Now apply RULE 1 OR 2, whichever is required.
"""

18
other/euclidean_gcd.py Normal file
View File

@ -0,0 +1,18 @@
# https://en.wikipedia.org/wiki/Euclidean_algorithm
def euclidean_gcd(a, b):
while b:
t = b
b = a % b
a = t
return a
def main():
print("GCD(3, 5) = " + str(euclidean_gcd(3, 5)))
print("GCD(5, 3) = " + str(euclidean_gcd(5, 3)))
print("GCD(1, 3) = " + str(euclidean_gcd(1, 3)))
print("GCD(3, 6) = " + str(euclidean_gcd(3, 6)))
print("GCD(6, 3) = " + str(euclidean_gcd(6, 3)))
if __name__ == '__main__':
main()

View File

@ -0,0 +1,118 @@
'''Conway's Game Of Life, Author Anurag Kumar(mailto:anuragkumarak95@gmail.com)
Requirements:
- numpy
- random
- time
- matplotlib
Python:
- 3.5
Usage:
- $python3 game_o_life <canvas_size:int>
Game-Of-Life Rules:
1.
Any live cell with fewer than two live neighbours
dies, as if caused by under-population.
2.
Any live cell with two or three live neighbours lives
on to the next generation.
3.
Any live cell with more than three live neighbours
dies, as if by over-population.
4.
Any dead cell with exactly three live neighbours be-
comes a live cell, as if by reproduction.
'''
import numpy as np
import random, time, sys
from matplotlib import pyplot as plt
import matplotlib.animation as animation
from matplotlib.colors import ListedColormap
usage_doc='Usage of script: script_nama <size_of_canvas:int>'
choice = [0]*100 + [1]*10
random.shuffle(choice)
def create_canvas(size):
canvas = [ [False for i in range(size)] for j in range(size)]
return canvas
def seed(canvas):
for i,row in enumerate(canvas):
for j,_ in enumerate(row):
canvas[i][j]=bool(random.getrandbits(1))
def run(canvas):
''' This function runs the rules of game through all points, and changes their status accordingly.(in the same canvas)
@Args:
--
canvas : canvas of population to run the rules on.
@returns:
--
None
'''
canvas = np.array(canvas)
next_gen_canvas = np.array(create_canvas(canvas.shape[0]))
for r, row in enumerate(canvas):
for c, pt in enumerate(row):
# print(r-1,r+2,c-1,c+2)
next_gen_canvas[r][c] = __judge_point(pt,canvas[r-1:r+2,c-1:c+2])
canvas = next_gen_canvas
del next_gen_canvas # cleaning memory as we move on.
return canvas.tolist()
def __judge_point(pt,neighbours):
dead = 0
alive = 0
# finding dead or alive neighbours count.
for i in neighbours:
for status in i:
if status: alive+=1
else: dead+=1
# handling duplicate entry for focus pt.
if pt : alive-=1
else : dead-=1
# running the rules of game here.
state = pt
if pt:
if alive<2:
state=False
elif alive==2 or alive==3:
state=True
elif alive>3:
state=False
else:
if alive==3:
state=True
return state
if __name__=='__main__':
if len(sys.argv) != 2: raise Exception(usage_doc)
canvas_size = int(sys.argv[1])
# main working structure of this module.
c=create_canvas(canvas_size)
seed(c)
fig, ax = plt.subplots()
fig.show()
cmap = ListedColormap(['w','k'])
try:
while True:
c = run(c)
ax.matshow(c,cmap=cmap)
fig.canvas.draw()
ax.cla()
except KeyboardInterrupt:
# do nothing.
pass

Binary file not shown.

After

Width:  |  Height:  |  Size: 224 KiB

View File

@ -18,28 +18,20 @@ returns true if S is nested and false otherwise.
def is_balanced(S):
stack = []
open_brackets = set({'(', '[', '{'})
closed_brackets = set({')', ']', '}'})
open_to_closed = dict({'{':'}', '[':']', '(':')'})
for i in range(len(S)):
if S[i] == '(' or S[i] == '{' or S[i] == '[':
if S[i] in open_brackets:
stack.append(S[i])
else:
if len(stack) > 0:
pair = stack.pop() + S[i]
if pair != '[]' and pair != '()' and pair != '{}':
elif S[i] in closed_brackets:
if len(stack) == 0 or (len(stack) > 0 and open_to_closed[stack.pop()] != S[i]):
return False
else:
return False
if len(stack) == 0:
return True
return False
return len(stack) == 0
def main():

View File

@ -0,0 +1,64 @@
'''Author Anurag Kumar | anuragkumarak95@gmail.com | git/anuragkumarak95
Simple example of Fractal generation using recursive function.
What is Sierpinski Triangle?
>>The Sierpinski triangle (also with the original orthography Sierpinski), also called the Sierpinski gasket or the Sierpinski Sieve,
is a fractal and attractive fixed set with the overall shape of an equilateral triangle, subdivided recursively into smaller
equilateral triangles. Originally constructed as a curve, this is one of the basic examples of self-similar sets, i.e.,
it is a mathematically generated pattern that can be reproducible at any magnification or reduction. It is named after
the Polish mathematician Wacław Sierpinski, but appeared as a decorative pattern many centuries prior to the work of Sierpinski.
Requirements(pip):
- turtle
Python:
- 2.6
Usage:
- $python sierpinski_triangle.py <int:depth_for_fractal>
Credits: This code was written by editing the code from http://www.lpb-riannetrujillo.com/blog/python-fractal/
'''
import turtle
import sys
PROGNAME = 'Sierpinski Triangle'
if len(sys.argv) !=2:
raise Exception('right format for using this script: $python fractals.py <int:depth_for_fractal>')
myPen = turtle.Turtle()
myPen.ht()
myPen.speed(5)
myPen.pencolor('red')
points = [[-175,-125],[0,175],[175,-125]] #size of triangle
def getMid(p1,p2):
return ( (p1[0]+p2[0]) / 2, (p1[1] + p2[1]) / 2) #find midpoint
def triangle(points,depth):
myPen.up()
myPen.goto(points[0][0],points[0][1])
myPen.down()
myPen.goto(points[1][0],points[1][1])
myPen.goto(points[2][0],points[2][1])
myPen.goto(points[0][0],points[0][1])
if depth>0:
triangle([points[0],
getMid(points[0], points[1]),
getMid(points[0], points[2])],
depth-1)
triangle([points[1],
getMid(points[0], points[1]),
getMid(points[1], points[2])],
depth-1)
triangle([points[2],
getMid(points[2], points[1]),
getMid(points[0], points[2])],
depth-1)
triangle(points,int(sys.argv[1]))

28
other/two-sum.py Normal file
View File

@ -0,0 +1,28 @@
"""
Given an array of integers, return indices of the two numbers such that they add up to a specific target.
You may assume that each input would have exactly one solution, and you may not use the same element twice.
Example:
Given nums = [2, 7, 11, 15], target = 9,
Because nums[0] + nums[1] = 2 + 7 = 9,
return [0, 1].
"""
def twoSum(nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: List[int]
"""
chk_map = {}
for index, val in enumerate(nums):
compl = target - val
if compl in chk_map:
indices = [chk_map[compl], index]
print(indices)
return [indices]
else:
chk_map[val] = index
return False

View File

@ -137,14 +137,14 @@ def __assert_sorted(collection):
if __name__ == '__main__':
import sys
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input
else:
input_function = input
user_input = input_function('Enter numbers separated by coma:\n')
user_input = input_function('Enter numbers separated by comma:\n')
collection = [int(item) for item in user_input.split(',')]
try:
__assert_sorted(collection)

View File

@ -0,0 +1,102 @@
"""
This is pure python implementation of interpolation search algorithm
"""
from __future__ import print_function
import bisect
def interpolation_search(sorted_collection, item):
"""Pure implementation of interpolation search algorithm in Python
Be careful collection must be sorted, otherwise result will be
unpredictable
:param sorted_collection: some sorted collection with comparable items
:param item: item value to search
:return: index of found item or None if item is not found
"""
left = 0
right = len(sorted_collection) - 1
while left <= right:
point = left + ((item - sorted_collection[left]) * (right - left)) // (sorted_collection[right] - sorted_collection[left])
#out of range check
if point<0 or point>=len(sorted_collection):
return None
current_item = sorted_collection[point]
if current_item == item:
return point
else:
if item < current_item:
right = point - 1
else:
left = point + 1
return None
def interpolation_search_by_recursion(sorted_collection, item, left, right):
"""Pure implementation of interpolation search algorithm in Python by recursion
Be careful collection must be sorted, otherwise result will be
unpredictable
First recursion should be started with left=0 and right=(len(sorted_collection)-1)
:param sorted_collection: some sorted collection with comparable items
:param item: item value to search
:return: index of found item or None if item is not found
"""
point = left + ((item - sorted_collection[left]) * (right - left)) // (sorted_collection[right] - sorted_collection[left])
#out of range check
if point<0 or point>=len(sorted_collection):
return None
if sorted_collection[point] == item:
return point
elif sorted_collection[point] > item:
return interpolation_search_by_recursion(sorted_collection, item, left, point-1)
else:
return interpolation_search_by_recursion(sorted_collection, item, point+1, right)
def __assert_sorted(collection):
"""Check if collection is sorted, if not - raises :py:class:`ValueError`
:param collection: collection
:return: True if collection is sorted
:raise: :py:class:`ValueError` if collection is not sorted
Examples:
>>> __assert_sorted([0, 1, 2, 4])
True
>>> __assert_sorted([10, -1, 5])
Traceback (most recent call last):
...
ValueError: Collection must be sorted
"""
if collection != sorted(collection):
raise ValueError('Collection must be sorted')
return True
if __name__ == '__main__':
import sys
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input
else:
input_function = input
user_input = input_function('Enter numbers separated by comma:\n')
collection = [int(item) for item in user_input.split(',')]
try:
__assert_sorted(collection)
except ValueError:
sys.exit('Sequence must be sorted to apply interpolation search')
target_input = input_function(
'Enter a single number to be found in the list:\n'
)
target = int(target_input)
result = interpolation_search(collection, target)
if result is not None:
print('{} found at positions: {}'.format(target, result))
else:
print('Not found')

View File

@ -41,7 +41,7 @@ def linear_search(sequence, target):
if __name__ == '__main__':
import sys
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input

112
searches/ternary_search.py Normal file
View File

@ -0,0 +1,112 @@
'''
This is a type of divide and conquer algorithm which divides the search space into
3 parts and finds the target value based on the property of the array or list
(usually monotonic property).
Time Complexity : O(log3 N)
Space Complexity : O(1)
'''
import sys
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
precision = 10
# This is the linear search that will occur after the search space has become smaller.
def lin_search(left, right, A, target):
for i in range(left, right+1):
if(A[i] == target):
return i
# This is the iterative method of the ternary search algorithm.
def ite_ternary_search(A, target):
left = 0
right = len(A) - 1;
while(True):
if(left<right):
if(right-left < precision):
return lin_search(left,right,A,target)
oneThird = (left+right)/3+1;
twoThird = 2*(left+right)/3+1;
if(A[oneThird] == target):
return oneThird
elif(A[twoThird] == target):
return twoThird
elif(target < A[oneThird]):
right = oneThird-1
elif(A[twoThird] < target):
left = twoThird+1
else:
left = oneThird+1
right = twoThird-1
else:
return None
# This is the recursive method of the ternary search algorithm.
def rec_ternary_search(left, right, A, target):
if(left<right):
if(right-left < precision):
return lin_search(left,right,A,target)
oneThird = (left+right)/3+1;
twoThird = 2*(left+right)/3+1;
if(A[oneThird] == target):
return oneThird
elif(A[twoThird] == target):
return twoThird
elif(target < A[oneThird]):
return rec_ternary_search(left, oneThird-1, A, target)
elif(A[twoThird] < target):
return rec_ternary_search(twoThird+1, right, A, target)
else:
return rec_ternary_search(oneThird+1, twoThird-1, A, target)
else:
return None
# This function is to check if the array is sorted.
def __assert_sorted(collection):
if collection != sorted(collection):
raise ValueError('Collection must be sorted')
return True
if __name__ == '__main__':
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input
else:
input_function = input
user_input = input_function('Enter numbers separated by coma:\n')
collection = [int(item) for item in user_input.split(',')]
try:
__assert_sorted(collection)
except ValueError:
sys.exit('Sequence must be sorted to apply the ternary search')
target_input = input_function(
'Enter a single number to be found in the list:\n'
)
target = int(target_input)
result1 = ite_ternary_search(collection, target)
result2 = rec_ternary_search(0, len(collection)-1, collection, target)
if result2 is not None:
print('Iterative search: {} found at positions: {}'.format(target, result1))
print('Recursive search: {} found at positions: {}'.format(target, result2))
else:
print('Not found')

View File

@ -41,7 +41,7 @@ def bogosort(collection):
if __name__ == '__main__':
import sys
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input

View File

@ -41,7 +41,7 @@ def bubble_sort(collection):
if __name__ == '__main__':
import sys
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input

View File

@ -23,7 +23,7 @@ def cocktail_shaker_sort(unsorted):
if __name__ == '__main__':
import sys
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input

72
sorts/counting_sort.py Normal file
View File

@ -0,0 +1,72 @@
"""
This is pure python implementation of counting sort algorithm
For doctests run following command:
python -m doctest -v counting_sort.py
or
python3 -m doctest -v counting_sort.py
For manual testing run:
python counting_sort.py
"""
from __future__ import print_function
def counting_sort(collection):
"""Pure implementation of counting sort algorithm in Python
:param collection: some mutable ordered collection with heterogeneous
comparable items inside
:return: the same collection ordered by ascending
Examples:
>>> counting_sort([0, 5, 3, 2, 2])
[0, 2, 2, 3, 5]
>>> counting_sort([])
[]
>>> counting_sort([-2, -5, -45])
[-45, -5, -2]
"""
# if the collection is empty, returns empty
if collection == []:
return []
# get some information about the collection
coll_len = len(collection)
coll_max = max(collection)
coll_min = min(collection)
# create the counting array
counting_arr_length = coll_max + 1 - coll_min
counting_arr = [0] * counting_arr_length
# count how much a number appears in the collection
for number in collection:
counting_arr[number - coll_min] += 1
# sum each position with it's predecessors. now, counting_arr[i] tells
# us how many elements <= i has in the collection
for i in range(1, counting_arr_length):
counting_arr[i] = counting_arr[i] + counting_arr[i-1]
# create the output collection
ordered = [0] * coll_len
# place the elements in the output, respecting the original order (stable
# sort) from end to begin, updating counting_arr
for i in reversed(range(0, coll_len)):
ordered[counting_arr[collection[i] - coll_min]-1] = collection[i]
counting_arr[collection[i] - coll_min] -= 1
return ordered
if __name__ == '__main__':
import sys
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input
else:
input_function = input
user_input = input_function('Enter numbers separated by a comma:\n')
unsorted = [int(item) for item in user_input.split(',')]
print(counting_sort(unsorted))

41
sorts/countingsort.py Normal file
View File

@ -0,0 +1,41 @@
# Python program for counting sort
# This is the main function that sort the given string arr[] in
# in the alphabetical order
def countSort(arr):
# The output character array that will have sorted arr
output = [0 for i in range(256)]
# Create a count array to store count of inidividul
# characters and initialize count array as 0
count = [0 for i in range(256)]
# For storing the resulting answer since the
# string is immutable
ans = ["" for _ in arr]
# Store count of each character
for i in arr:
count[ord(i)] += 1
# Change count[i] so that count[i] now contains actual
# position of this character in output array
for i in range(256):
count[i] += count[i-1]
# Build the output character array
for i in range(len(arr)):
output[count[ord(arr[i])]-1] = arr[i]
count[ord(arr[i])] -= 1
# Copy the output array to arr, so that arr now
# contains sorted characters
for i in range(len(arr)):
ans[i] = output[i]
return ans
# Driver program to test above function
arr = "thisisthestring"
ans = countSort(arr)
print ("Sorted string array is %s" %("".join(ans)))

51
sorts/cyclesort.py Normal file
View File

@ -0,0 +1,51 @@
# Code contributed by Honey Sharma
def cycle_sort(array):
ans = 0
# Pass through the array to find cycles to rotate.
for cycleStart in range(0, len(array) - 1):
item = array[cycleStart]
# finding the position for putting the item.
pos = cycleStart
for i in range(cycleStart + 1, len(array)):
if array[i] < item:
pos += 1
# If the item is already present-not a cycle.
if pos == cycleStart:
continue
# Otherwise, put the item there or right after any duplicates.
while item == array[pos]:
pos += 1
array[pos], item = item, array[pos]
ans += 1
# Rotate the rest of the cycle.
while pos != cycleStart:
# Find where to put the item.
pos = cycleStart
for i in range(cycleStart + 1, len(array)):
if array[i] < item:
pos += 1
# Put the item there or right after any duplicates.
while item == array[pos]:
pos += 1
array[pos], item = item, array[pos]
ans += 1
return ans
# Main Code starts here
user_input = input('Enter numbers separated by a comma:\n')
unsorted = [int(item) for item in user_input.split(',')]
n = len(unsorted)
cycle_sort(unsorted)
print("After sort : ")
for i in range(0, n):
print(unsorted[i], end=' ')

161
sorts/external-sort.py Normal file
View File

@ -0,0 +1,161 @@
#!/usr/bin/env python
#
# Sort large text files in a minimum amount of memory
#
import os
import sys
import argparse
class FileSplitter(object):
BLOCK_FILENAME_FORMAT = 'block_{0}.dat'
def __init__(self, filename):
self.filename = filename
self.block_filenames = []
def write_block(self, data, block_number):
filename = self.BLOCK_FILENAME_FORMAT.format(block_number)
file = open(filename, 'w')
file.write(data)
file.close()
self.block_filenames.append(filename)
def get_block_filenames(self):
return self.block_filenames
def split(self, block_size, sort_key=None):
file = open(self.filename, 'r')
i = 0
while True:
lines = file.readlines(block_size)
if lines == []:
break
if sort_key is None:
lines.sort()
else:
lines.sort(key=sort_key)
self.write_block(''.join(lines), i)
i += 1
def cleanup(self):
map(lambda f: os.remove(f), self.block_filenames)
class NWayMerge(object):
def select(self, choices):
min_index = -1
min_str = None
for i in range(len(choices)):
if min_str is None or choices[i] < min_str:
min_index = i
return min_index
class FilesArray(object):
def __init__(self, files):
self.files = files
self.empty = set()
self.num_buffers = len(files)
self.buffers = {i: None for i in range(self.num_buffers)}
def get_dict(self):
return {i: self.buffers[i] for i in range(self.num_buffers) if i not in self.empty}
def refresh(self):
for i in range(self.num_buffers):
if self.buffers[i] is None and i not in self.empty:
self.buffers[i] = self.files[i].readline()
if self.buffers[i] == '':
self.empty.add(i)
if len(self.empty) == self.num_buffers:
return False
return True
def unshift(self, index):
value = self.buffers[index]
self.buffers[index] = None
return value
class FileMerger(object):
def __init__(self, merge_strategy):
self.merge_strategy = merge_strategy
def merge(self, filenames, outfilename, buffer_size):
outfile = open(outfilename, 'w', buffer_size)
buffers = FilesArray(self.get_file_handles(filenames, buffer_size))
while buffers.refresh():
min_index = self.merge_strategy.select(buffers.get_dict())
outfile.write(buffers.unshift(min_index))
def get_file_handles(self, filenames, buffer_size):
files = {}
for i in range(len(filenames)):
files[i] = open(filenames[i], 'r', buffer_size)
return files
class ExternalSort(object):
def __init__(self, block_size):
self.block_size = block_size
def sort(self, filename, sort_key=None):
num_blocks = self.get_number_blocks(filename, self.block_size)
splitter = FileSplitter(filename)
splitter.split(self.block_size, sort_key)
merger = FileMerger(NWayMerge())
buffer_size = self.block_size / (num_blocks + 1)
merger.merge(splitter.get_block_filenames(), filename + '.out', buffer_size)
splitter.cleanup()
def get_number_blocks(self, filename, block_size):
return (os.stat(filename).st_size / block_size) + 1
def parse_memory(string):
if string[-1].lower() == 'k':
return int(string[:-1]) * 1024
elif string[-1].lower() == 'm':
return int(string[:-1]) * 1024 * 1024
elif string[-1].lower() == 'g':
return int(string[:-1]) * 1024 * 1024 * 1024
else:
return int(string)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-m',
'--mem',
help='amount of memory to use for sorting',
default='100M')
parser.add_argument('filename',
metavar='<filename>',
nargs=1,
help='name of file to sort')
args = parser.parse_args()
sorter = ExternalSort(parse_memory(args.mem))
sorter.sort(args.filename[0])
if __name__ == '__main__':
main()

View File

@ -21,7 +21,7 @@ def gnome_sort(unsorted):
if __name__ == '__main__':
import sys
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input

View File

@ -41,7 +41,7 @@ def insertion_sort(collection):
if __name__ == '__main__':
import sys
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input

View File

@ -64,7 +64,7 @@ def merge_sort(collection):
if __name__ == '__main__':
import sys
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input

View File

@ -42,7 +42,7 @@ def quick_sort(ARRAY):
if __name__ == '__main__':
import sys
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input

View File

@ -10,8 +10,9 @@ def radixsort(lst):
# split lst between lists
for i in lst:
tmp = i / placement
buckets[tmp % RADIX].append( i )
tmp = int((i / placement) % RADIX)
buckets[tmp].append(i)
if maxLength and tmp > 0:
maxLength = False

View File

@ -44,7 +44,7 @@ def selection_sort(collection):
if __name__ == '__main__':
import sys
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input

View File

@ -45,7 +45,7 @@ def shell_sort(collection):
if __name__ == '__main__':
import sys
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input

81
sorts/timsort.py Normal file
View File

@ -0,0 +1,81 @@
def binary_search(lst, item, start, end):
if start == end:
if lst[start] > item:
return start
else:
return start + 1
if start > end:
return start
mid = (start + end) // 2
if lst[mid] < item:
return binary_search(lst, item, mid + 1, end)
elif lst[mid] > item:
return binary_search(lst, item, start, mid - 1)
else:
return mid
def insertion_sort(lst):
length = len(lst)
for index in range(1, length):
value = lst[index]
pos = binary_search(lst, value, 0, index - 1)
lst = lst[:pos] + [value] + lst[pos:index] + lst[index+1:]
return lst
def merge(left, right):
if not left:
return right
if not right:
return left
if left[0] < right[0]:
return [left[0]] + merge(left[1:], right)
return [right[0]] + merge(left, right[1:])
def timsort(lst):
runs, sorted_runs = [], []
length = len(lst)
new_run = [lst[0]]
sorted_array = []
for i in range(1, length):
if i == length - 1:
new_run.append(lst[i])
runs.append(new_run)
break
if lst[i] < lst[i - 1]:
if not new_run:
runs.append([lst[i - 1]])
new_run.append(lst[i])
else:
runs.append(new_run)
new_run = []
else:
new_run.append(lst[i])
for run in runs:
sorted_runs.append(insertion_sort(run))
for run in sorted_runs:
sorted_array = merge(sorted_array, run)
return sorted_array
def main():
lst = [5,9,10,3,-4,5,178,92,46,-18,0,7]
sorted_lst = timsort(lst)
print(sorted_lst)
if __name__ == '__main__':
main()

View File

@ -84,7 +84,7 @@ if __name__ == '__main__':
import sys
print("\n********* Binary Tree Traversals ************\n")
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input