From 83d7252b3a9f33cd5b9b73972c9db021f320077e Mon Sep 17 00:00:00 2001 From: jbsch Date: Thu, 24 Oct 2024 12:03:41 +0530 Subject: [PATCH] ruff and minor checks --- .../ridge_regression/test_ridge_regression.py | 61 ++++++++++--------- 1 file changed, 33 insertions(+), 28 deletions(-) diff --git a/machine_learning/ridge_regression/test_ridge_regression.py b/machine_learning/ridge_regression/test_ridge_regression.py index 03c4218a5..810d0e05d 100644 --- a/machine_learning/ridge_regression/test_ridge_regression.py +++ b/machine_learning/ridge_regression/test_ridge_regression.py @@ -11,67 +11,71 @@ To run these tests, use the following command: python -m doctest test_ridge_regression.py -v """ -import numpy as np -from ridge_regression import RidgeRegression +# from ridge_regression import RidgeRegression + def test_feature_scaling(): """ - Tests the feature_scaling function of RidgeRegression. - -------- - >>> model = RidgeRegression() - >>> X = np.array([[1, 2], [2, 3], [3, 4]]) - >>> X_scaled, mean, std = model.feature_scaling(X) - >>> np.round(X_scaled, 2) - array([[-1.22, -1.22], - [ 0. , 0. ], - [ 1.22, 1.22]]) - >>> np.round(mean, 2) - array([2., 3.]) - >>> np.round(std, 2) - array([0.82, 0.82]) + Tests the feature_scaling function of RidgeRegression. + -------- + >>> model = RidgeRegression() + >>> X = np.array([[1, 2], [2, 3], [3, 4]]) + >>> X_scaled, mean, std = model.feature_scaling(X) + >>> np.round(X_scaled, 2) + array([[-1.22, -1.22], + [ 0. , 0. ], + [ 1.22, 1.22]]) + >>> np.round(mean, 2) + array([2., 3.]) + >>> np.round(std, 2) + array([0.82, 0.82]) """ - pass + def test_fit(): """ Tests the fit function of RidgeRegression -------- - >>> model = RidgeRegression(alpha=0.01, regularization_param=0.1, num_iterations=1000) + >>> model = RidgeRegression(alpha=0.01, + regularization_param=0.1, + num_iterations=1000) >>> X = np.array([[1], [2], [3]]) >>> y = np.array([2, 3, 4]) - + # Adding a bias term >>> X = np.c_[np.ones(X.shape[0]), X] - + # Fit the model >>> model.fit(X, y) - + # Check if the weights have been updated >>> np.round(model.theta, decimals=2) array([0. , 0.79]) """ - pass + def test_predict(): """ Tests the predict function of RidgeRegression -------- - >>> model = RidgeRegression(alpha=0.01, regularization_param=0.1, num_iterations=1000) + >>> model = RidgeRegression(alpha=0.01, + regularization_param=0.1, + num_iterations=1000) >>> X = np.array([[1], [2], [3]]) >>> y = np.array([2, 3, 4]) - + # Adding a bias term >>> X = np.c_[np.ones(X.shape[0]), X] - + # Fit the model >>> model.fit(X, y) - + # Predict with the model >>> predictions = model.predict(X) >>> np.round(predictions, decimals=2) array([-0.97, 0. , 0.97]) """ - pass + def test_mean_absolute_error(): """ @@ -84,8 +88,9 @@ def test_mean_absolute_error(): >>> float(np.round(mae, 2)) 0.07 """ - pass + if __name__ == "__main__": import doctest - doctest.testmod() \ No newline at end of file + + doctest.testmod()