mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 15:01:08 +00:00
Update genetic_algorithm_optimization.py
This commit is contained in:
parent
dbd29aed76
commit
84b29c0eed
|
@ -60,10 +60,7 @@ class GeneticAlgorithm:
|
|||
True
|
||||
"""
|
||||
return [
|
||||
rng.uniform(
|
||||
low=[self.bounds[j][0] for j in range(self.dim)],
|
||||
high=[self.bounds[j][1] for j in range(self.dim)],
|
||||
)
|
||||
np.array([rng.uniform(b[0], b[1]) for b in self.bounds])
|
||||
for _ in range(self.population_size)
|
||||
]
|
||||
|
||||
|
@ -122,6 +119,10 @@ class GeneticAlgorithm:
|
|||
# Parent 2 should be [-1.0, -2.0]
|
||||
True
|
||||
"""
|
||||
|
||||
if not population_score:
|
||||
raise ValueError("Population score is empty, cannot select parents.")
|
||||
|
||||
population_score.sort(key=lambda score_tuple: score_tuple[1], reverse=True)
|
||||
selected_count = min(N_SELECTED, len(population_score))
|
||||
return [ind for ind, _ in population_score[:selected_count]]
|
||||
|
@ -244,30 +245,32 @@ class GeneticAlgorithm:
|
|||
for generation in range(self.generations):
|
||||
# Evaluate population fitness (multithreaded)
|
||||
population_score = self.evaluate_population()
|
||||
|
||||
|
||||
# Ensure population_score isn't empty
|
||||
if not population_score:
|
||||
raise ValueError("Population score is empty. No individuals evaluated.")
|
||||
|
||||
# Check the best individual
|
||||
best_individual = max(
|
||||
population_score, key=lambda score_tuple: score_tuple[1]
|
||||
)[0]
|
||||
best_individual = max(population_score, key=lambda score_tuple: score_tuple[1])[0]
|
||||
best_fitness = self.fitness(best_individual)
|
||||
|
||||
|
||||
# Select parents for next generation
|
||||
parents = self.select_parents(population_score)
|
||||
next_generation = []
|
||||
|
||||
|
||||
# Generate offspring using crossover and mutation
|
||||
for i in range(0, len(parents), 2):
|
||||
parent1, parent2 = parents[i], parents[(i + 1) % len(parents)]
|
||||
parent1, parent2 = parents[i], parents[(i + 1) % len(parents)] # Wrap around for odd cases
|
||||
child1, child2 = self.crossover(parent1, parent2)
|
||||
next_generation.append(self.mutate(child1))
|
||||
next_generation.append(self.mutate(child2))
|
||||
|
||||
|
||||
# Ensure population size remains the same
|
||||
self.population = next_generation[: self.population_size]
|
||||
|
||||
|
||||
if verbose and generation % 10 == 0:
|
||||
print(f"Generation {generation}: Best Fitness = {best_fitness}")
|
||||
|
||||
|
||||
return best_individual
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user