mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-02-20 00:02:04 +00:00
Add Lucas_Lehmer_primality_test (#1050)
* Add Lucas_Lehmer_primality_test * Add explanation for Lucas_Lehmer_primality_test * Update and rename Lucas_Lehmer_primality_test.py to lucas_lehmer_primality_test.py
This commit is contained in:
parent
a9ecdb33ca
commit
861a8c3631
42
maths/lucas_lehmer_primality_test.py
Normal file
42
maths/lucas_lehmer_primality_test.py
Normal file
|
@ -0,0 +1,42 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
In mathematics, the Lucas–Lehmer test (LLT) is a primality test for Mersenne numbers.
|
||||
https://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test
|
||||
|
||||
A Mersenne number is a number that is one less than a power of two.
|
||||
That is M_p = 2^p - 1
|
||||
https://en.wikipedia.org/wiki/Mersenne_prime
|
||||
|
||||
The Lucas–Lehmer test is the primality test used by the
|
||||
Great Internet Mersenne Prime Search (GIMPS) to locate large primes.
|
||||
"""
|
||||
|
||||
|
||||
# Primality test 2^p - 1
|
||||
# Return true if 2^p - 1 is prime
|
||||
def lucas_lehmer_test(p: int) -> bool:
|
||||
"""
|
||||
>>> lucas_lehmer_test(p=7)
|
||||
True
|
||||
|
||||
>>> lucas_lehmer_test(p=11)
|
||||
False
|
||||
|
||||
# M_11 = 2^11 - 1 = 2047 = 23 * 89
|
||||
"""
|
||||
|
||||
if p < 2:
|
||||
raise ValueError("p should not be less than 2!")
|
||||
elif p == 2:
|
||||
return True
|
||||
|
||||
s = 4
|
||||
M = (1 << p) - 1
|
||||
for i in range(p - 2):
|
||||
s = ((s * s) - 2) % M
|
||||
return s == 0
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(lucas_lehmer_test(7))
|
||||
print(lucas_lehmer_test(11))
|
Loading…
Reference in New Issue
Block a user