This commit is contained in:
UTSAV SINGHAL 2024-11-19 10:58:18 +08:00 committed by GitHub
commit 86b7d10fb5
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -0,0 +1,317 @@
import random
from collections.abc import Callable, Sequence
from concurrent.futures import ThreadPoolExecutor
import numpy as np
# Parameters
N_POPULATION = 100 # Population size
N_GENERATIONS = 500 # Maximum number of generations
N_SELECTED = 50 # Number of parents selected for the next generation
MUTATION_PROBABILITY = 0.1 # Mutation probability
CROSSOVER_RATE = 0.8 # Probability of crossover
SEARCH_SPACE = (-10, 10) # Search space for the variables
# Random number generator
rng = np.random.default_rng()
class GeneticAlgorithm:
def __init__(
self,
function: Callable[[float, float], float],
bounds: Sequence[tuple[int | float, int | float]],
population_size: int,
generations: int,
mutation_prob: float,
crossover_rate: float,
maximize: bool = True,
) -> None:
self.function = function # Target function to optimize
self.bounds = bounds # Search space bounds (for each variable)
self.population_size = population_size
self.generations = generations
self.mutation_prob = mutation_prob
self.crossover_rate = crossover_rate
self.maximize = maximize
self.dim = len(bounds) # Dimensionality of the function (number of variables)
# Initialize population
self.population = self.initialize_population()
def initialize_population(self) -> list[np.ndarray]:
"""
Initialize the population with random individuals within the search space.
Example:
>>> ga = GeneticAlgorithm(
... function=lambda x, y: x**2 + y**2,
... bounds=[(-10, 10), (-10, 10)],
... population_size=5,
... generations=10,
... mutation_prob=0.1,
... crossover_rate=0.8,
... maximize=False
... )
>>> len(ga.initialize_population())
5 # The population size should be equal to 5.
>>> all(len(ind) == 2 for ind in ga.initialize_population())
# Each individual should have 2 variables
True
"""
return [
np.array([rng.uniform(b[0], b[1]) for b in self.bounds])
for _ in range(self.population_size)
]
def fitness(self, individual: np.ndarray) -> float:
"""
Calculate the fitness value (function value) for an individual.
Example:
>>> ga = GeneticAlgorithm(
... function=lambda x, y: x**2 + y**2,
... bounds=[(-10, 10), (-10, 10)],
... population_size=10,
... generations=10,
... mutation_prob=0.1,
... crossover_rate=0.8,
... maximize=False
... )
>>> individual = np.array([1.0, 2.0])
>>> ga.fitness(individual)
-5.0 # The fitness should be -1^2 + 2^2 = 5 for minimizing
>>> ga.maximize = True
>>> ga.fitness(individual)
5.0 # The fitness should be 1^2 + 2^2 = 5 when maximizing
"""
value = float(self.function(*individual)) # Ensure fitness is a float
return value if self.maximize else -value # If minimizing, invert the fitness
def select_parents(
self, population_score: list[tuple[np.ndarray, float]]
) -> list[np.ndarray]:
"""
Select top N_SELECTED parents based on fitness.
Example:
>>> ga = GeneticAlgorithm(
... function=lambda x, y: x**2 + y**2,
... bounds=[(-10, 10), (-10, 10)],
... population_size=10,
... generations=10,
... mutation_prob=0.1,
... crossover_rate=0.8,
... maximize=False
... )
>>> population_score = [
... (np.array([1.0, 2.0]), 5.0),
... (np.array([-1.0, -2.0]), 5.0),
... (np.array([0.0, 0.0]), 0.0),
... ]
>>> selected_parents = ga.select_parents(population_score)
>>> len(selected_parents)
2 # Should select the two parents with the best fitness scores.
>>> np.array_equal(selected_parents[0], np.array([1.0, 2.0]))
# Parent 1 should be [1.0, 2.0]
True
>>> np.array_equal(selected_parents[1], np.array([-1.0, -2.0]))
# Parent 2 should be [-1.0, -2.0]
True
"""
if not population_score:
raise ValueError("Population score is empty, cannot select parents.")
population_score.sort(key=lambda score_tuple: score_tuple[1], reverse=True)
selected_count = min(N_SELECTED, len(population_score))
return [ind for ind, _ in population_score[:selected_count]]
def crossover(
self, parent1: np.ndarray, parent2: np.ndarray
) -> tuple[np.ndarray, np.ndarray]:
"""
Perform uniform crossover between two parents to generate offspring.
Args:
parent1 (np.ndarray): The first parent.
parent2 (np.ndarray): The second parent.
Returns:
tuple[np.ndarray, np.ndarray]: The two offspring generated by crossover.
Example:
>>> ga = GeneticAlgorithm(
... lambda x, y: -(x**2 + y**2),
... [(-10, 10), (-10, 10)],
... 10, 100, 0.1, 0.8, True
... )
>>> parent1, parent2 = np.array([1, 2]), np.array([3, 4])
>>> len(ga.crossover(parent1, parent2)) == 2
True
"""
if random.random() < self.crossover_rate:
cross_point = random.randint(1, self.dim - 1)
child1 = np.concatenate((parent1[:cross_point], parent2[cross_point:]))
child2 = np.concatenate((parent2[:cross_point], parent1[cross_point:]))
return child1, child2
return parent1, parent2
def mutate(self, individual: np.ndarray) -> np.ndarray:
"""
Apply mutation to an individual.
Args:
individual (np.ndarray): The individual to mutate.
Returns:
np.ndarray: The mutated individual.
Example:
>>> ga = GeneticAlgorithm(
... lambda x, y: -(x**2 + y**2),
... [(-10, 10), (-10, 10)],
... 10, 100, 0.1, 0.8, True
... )
>>> ind = np.array([1.0, 2.0])
>>> mutated = ga.mutate(ind)
>>> len(mutated) == 2 # Ensure it still has the correct number of dimensions
True
"""
for i in range(self.dim):
if random.random() < self.mutation_prob:
individual[i] = rng.uniform(self.bounds[i][0], self.bounds[i][1])
return individual
def evaluate_population(self) -> list[tuple[np.ndarray, float]]:
"""
Evaluate the fitness of the entire population in parallel.
Returns:
list[tuple[np.ndarray, float]]:
The population with their respective fitness values.
Example:
>>> ga = GeneticAlgorithm(
... lambda x, y: -(x**2 + y**2),
... [(-10, 10), (-10, 10)],
... 10, 100, 0.1, 0.8, True
... )
>>> eval_population = ga.evaluate_population()
>>> len(eval_population) == ga.population_size # Ensure population size
True
>>> all(
... isinstance(ind, tuple) and isinstance(ind[1], float)
... for ind in eval_population
... )
True
"""
with ThreadPoolExecutor() as executor:
return list(
executor.map(
lambda individual: (individual, self.fitness(individual)),
self.population,
)
)
def evolve(self, verbose: bool = True) -> np.ndarray:
"""
Evolve the population over the generations to find the best solution.
Args:
verbose (bool): If True, prints the progress of the generations.
Returns:
np.ndarray: The best individual found during the evolution process.
Example:
>>> ga = GeneticAlgorithm(
... function=lambda x, y: x**2 + y**2,
... bounds=[(-10, 10), (-10, 10)],
... population_size=10,
... generations=10,
... mutation_prob=0.1,
... crossover_rate=0.8,
... maximize=False
... )
>>> best_solution = ga.evolve(verbose=False)
>>> len(best_solution)
2 # The best solution should be a 2-element array (var_x, var_y)
>>> isinstance(best_solution[0], float) # First element should be a float
True
>>> isinstance(best_solution[1], float) # Second element should be a float
True
"""
best_individual = None
for generation in range(self.generations):
# Evaluate population fitness (multithreaded)
population_score = self.evaluate_population()
# Ensure population_score isn't empty
if not population_score:
raise ValueError("Population score is empty. No individuals evaluated.")
# Check the best individual
best_individual = max(
population_score, key=lambda score_tuple: score_tuple[1]
)[0]
best_fitness = self.fitness(best_individual)
# Select parents for next generation
parents = self.select_parents(population_score)
next_generation = []
# Generate offspring using crossover and mutation
for i in range(0, len(parents), 2):
parent1, parent2 = (
parents[i],
parents[(i + 1) % len(parents)],
) # Wrap around for odd cases
child1, child2 = self.crossover(parent1, parent2)
next_generation.append(self.mutate(child1))
next_generation.append(self.mutate(child2))
# Ensure population size remains the same
self.population = next_generation[: self.population_size]
if verbose and generation % 10 == 0:
print(f"Generation {generation}: Best Fitness = {best_fitness}")
return best_individual
# Example target function for optimization
def target_function(var_x: float, var_y: float) -> float:
"""
Example target function (parabola) for optimization.
Args:
var_x (float): The x-coordinate.
var_y (float): The y-coordinate.
Returns:
float: The value of the function at (var_x, var_y).
Example:
>>> target_function(0, 0)
0
>>> target_function(1, 1)
2
"""
return var_x**2 + var_y**2 # Simple parabolic surface (minimization)
# Set bounds for the variables (var_x, var_y)
bounds = [(-10, 10), (-10, 10)] # Both var_x and var_y range from -10 to 10
# Instantiate and run the genetic algorithm
ga = GeneticAlgorithm(
function=target_function,
bounds=bounds,
population_size=N_POPULATION,
generations=N_GENERATIONS,
mutation_prob=MUTATION_PROBABILITY,
crossover_rate=CROSSOVER_RATE,
maximize=False, # Minimize the function
)
best_solution = ga.evolve()
print(f"Best solution found: {best_solution}")
print(f"Best fitness (minimum value of function): {target_function(*best_solution)}")