quantum_teleportation.py (#6632)

* quantum_teleportation.py

This code is for the #Hacktoberfest.
This file run the quantum teleportation circuit using Qiskit.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update quantum/quantum_teleportation.py

Co-authored-by: Caeden <caedenperelliharris@gmail.com>

* Update quantum/quantum_teleportation.py

Co-authored-by: Caeden <caedenperelliharris@gmail.com>

* Update

Corrected some typos. 
Add more comments for adding the gates.
Update the variable qc with quantum_circuit in the simulator and execute.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* python return typehint solved.

* Fix long line

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Caeden <caedenperelliharris@gmail.com>
Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
Kevin Joven 2022-10-30 05:49:33 -04:00 committed by GitHub
parent 5ba5c54858
commit 87a5d91976
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -0,0 +1,70 @@
#!/usr/bin/env python3
"""
Build quantum teleportation circuit using three quantum bits
and 1 classical bit. The main idea is to send one qubit from
Alice to Bob using the entanglement properties. This experiment
run in IBM Q simulator with 1000 shots.
.
References:
https://en.wikipedia.org/wiki/Quantum_teleportation
https://qiskit.org/textbook/ch-algorithms/teleportation.html
"""
import numpy as np
import qiskit
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute
def quantum_teleportation(
theta: float = np.pi / 2, phi: float = np.pi / 2, lam: float = np.pi / 2
) -> qiskit.result.counts.Counts:
"""
# >>> quantum_teleportation()
#{'00': 500, '11': 500} # ideally
# ┌─────────────────┐ ┌───┐
#qr_0: ┤ U(π/2,π/2,π/2) ├───────■──┤ H ├─■─────────
# └──────┬───┬──────┘ ┌─┴─┐└───┘ │
#qr_1: ───────┤ H ├─────────■──┤ X ├──────┼───■─────
# └───┘ ┌─┴─┐└───┘ │ ┌─┴─┐┌─┐
#qr_2: ───────────────────┤ X ├───────────■─┤ X ├┤M├
# └───┘ └───┘└╥┘
#cr: 1/═══════════════════════════════════════════╩═
Args:
theta (float): Single qubit rotation U Gate theta parameter. Default to np.pi/2
phi (float): Single qubit rotation U Gate phi parameter. Default to np.pi/2
lam (float): Single qubit rotation U Gate lam parameter. Default to np.pi/2
Returns:
qiskit.result.counts.Counts: Teleported qubit counts.
"""
qr = QuantumRegister(3, "qr") # Define the number of quantum bits
cr = ClassicalRegister(1, "cr") # Define the number of classical bits
quantum_circuit = QuantumCircuit(qr, cr) # Define the quantum circuit.
# Build the circuit
quantum_circuit.u(theta, phi, lam, 0) # Quantum State to teleport
quantum_circuit.h(1) # add hadamard gate
quantum_circuit.cx(
1, 2
) # add control gate with qubit 1 as control and 2 as target.
quantum_circuit.cx(0, 1)
quantum_circuit.h(0)
quantum_circuit.cz(0, 2) # add control z gate.
quantum_circuit.cx(1, 2)
quantum_circuit.measure([2], [0]) # measure the qubit.
# Simulate the circuit using qasm simulator
backend = Aer.get_backend("qasm_simulator")
job = execute(quantum_circuit, backend, shots=1000)
return job.result().get_counts(quantum_circuit)
if __name__ == "__main__":
print(
"Total count for teleported state is: "
f"{quantum_teleportation(np.pi/2, np.pi/2, np.pi/2)}"
)