mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 15:01:08 +00:00
quantum_teleportation.py (#6632)
* quantum_teleportation.py This code is for the #Hacktoberfest. This file run the quantum teleportation circuit using Qiskit. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update quantum/quantum_teleportation.py Co-authored-by: Caeden <caedenperelliharris@gmail.com> * Update quantum/quantum_teleportation.py Co-authored-by: Caeden <caedenperelliharris@gmail.com> * Update Corrected some typos. Add more comments for adding the gates. Update the variable qc with quantum_circuit in the simulator and execute. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * python return typehint solved. * Fix long line Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Caeden <caedenperelliharris@gmail.com> Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
parent
5ba5c54858
commit
87a5d91976
70
quantum/quantum_teleportation.py
Normal file
70
quantum/quantum_teleportation.py
Normal file
|
@ -0,0 +1,70 @@
|
|||
#!/usr/bin/env python3
|
||||
"""
|
||||
Build quantum teleportation circuit using three quantum bits
|
||||
and 1 classical bit. The main idea is to send one qubit from
|
||||
Alice to Bob using the entanglement properties. This experiment
|
||||
run in IBM Q simulator with 1000 shots.
|
||||
.
|
||||
References:
|
||||
https://en.wikipedia.org/wiki/Quantum_teleportation
|
||||
https://qiskit.org/textbook/ch-algorithms/teleportation.html
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import qiskit
|
||||
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute
|
||||
|
||||
|
||||
def quantum_teleportation(
|
||||
theta: float = np.pi / 2, phi: float = np.pi / 2, lam: float = np.pi / 2
|
||||
) -> qiskit.result.counts.Counts:
|
||||
|
||||
"""
|
||||
# >>> quantum_teleportation()
|
||||
#{'00': 500, '11': 500} # ideally
|
||||
# ┌─────────────────┐ ┌───┐
|
||||
#qr_0: ┤ U(π/2,π/2,π/2) ├───────■──┤ H ├─■─────────
|
||||
# └──────┬───┬──────┘ ┌─┴─┐└───┘ │
|
||||
#qr_1: ───────┤ H ├─────────■──┤ X ├──────┼───■─────
|
||||
# └───┘ ┌─┴─┐└───┘ │ ┌─┴─┐┌─┐
|
||||
#qr_2: ───────────────────┤ X ├───────────■─┤ X ├┤M├
|
||||
# └───┘ └───┘└╥┘
|
||||
#cr: 1/═══════════════════════════════════════════╩═
|
||||
Args:
|
||||
theta (float): Single qubit rotation U Gate theta parameter. Default to np.pi/2
|
||||
phi (float): Single qubit rotation U Gate phi parameter. Default to np.pi/2
|
||||
lam (float): Single qubit rotation U Gate lam parameter. Default to np.pi/2
|
||||
Returns:
|
||||
qiskit.result.counts.Counts: Teleported qubit counts.
|
||||
"""
|
||||
|
||||
qr = QuantumRegister(3, "qr") # Define the number of quantum bits
|
||||
cr = ClassicalRegister(1, "cr") # Define the number of classical bits
|
||||
|
||||
quantum_circuit = QuantumCircuit(qr, cr) # Define the quantum circuit.
|
||||
|
||||
# Build the circuit
|
||||
quantum_circuit.u(theta, phi, lam, 0) # Quantum State to teleport
|
||||
quantum_circuit.h(1) # add hadamard gate
|
||||
quantum_circuit.cx(
|
||||
1, 2
|
||||
) # add control gate with qubit 1 as control and 2 as target.
|
||||
quantum_circuit.cx(0, 1)
|
||||
quantum_circuit.h(0)
|
||||
quantum_circuit.cz(0, 2) # add control z gate.
|
||||
quantum_circuit.cx(1, 2)
|
||||
|
||||
quantum_circuit.measure([2], [0]) # measure the qubit.
|
||||
|
||||
# Simulate the circuit using qasm simulator
|
||||
backend = Aer.get_backend("qasm_simulator")
|
||||
job = execute(quantum_circuit, backend, shots=1000)
|
||||
|
||||
return job.result().get_counts(quantum_circuit)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(
|
||||
"Total count for teleported state is: "
|
||||
f"{quantum_teleportation(np.pi/2, np.pi/2, np.pi/2)}"
|
||||
)
|
Loading…
Reference in New Issue
Block a user