mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 23:11:09 +00:00
Create prim.py (#397)
This commit is contained in:
parent
5be32f4022
commit
89f15bef0a
82
Graphs/prim.py
Normal file
82
Graphs/prim.py
Normal file
|
@ -0,0 +1,82 @@
|
|||
"""
|
||||
Prim's Algorithm.
|
||||
|
||||
Determines the minimum spanning tree(MST) of a graph using the Prim's Algorithm
|
||||
|
||||
Create a list to store x the vertices.
|
||||
G = [vertex(n) for n in range(x)]
|
||||
|
||||
For each vertex in G, add the neighbors:
|
||||
G[x].addNeighbor(G[y])
|
||||
G[y].addNeighbor(G[x])
|
||||
|
||||
For each vertex in G, add the edges:
|
||||
G[x].addEdge(G[y], w)
|
||||
G[y].addEdge(G[x], w)
|
||||
|
||||
To solve run:
|
||||
MST = prim(G, G[0])
|
||||
"""
|
||||
|
||||
import math
|
||||
|
||||
|
||||
class vertex():
|
||||
"""Class Vertex."""
|
||||
|
||||
def __init__(self, id):
|
||||
"""
|
||||
Arguments:
|
||||
id - input an id to identify the vertex
|
||||
|
||||
Attributes:
|
||||
neighbors - a list of the vertices it is linked to
|
||||
edges - a dict to store the edges's weight
|
||||
"""
|
||||
self.id = str(id)
|
||||
self.key = None
|
||||
self.pi = None
|
||||
self.neighbors = []
|
||||
self.edges = {} # [vertex:distance]
|
||||
|
||||
def __lt__(self, other):
|
||||
"""Comparison rule to < operator."""
|
||||
return (self.key < other.key)
|
||||
|
||||
def __repr__(self):
|
||||
"""Return the vertex id."""
|
||||
return self.id
|
||||
|
||||
def addNeighbor(self, vertex):
|
||||
"""Add a pointer to a vertex at neighbor's list."""
|
||||
self.neighbors.append(vertex)
|
||||
|
||||
def addEdge(self, vertex, weight):
|
||||
"""Destination vertex and weight."""
|
||||
self.edges[vertex.id] = weight
|
||||
|
||||
|
||||
def prim(graph, root):
|
||||
"""
|
||||
Prim's Algorithm.
|
||||
|
||||
Return a list with the edges of a Minimum Spanning Tree
|
||||
|
||||
prim(graph, graph[0])
|
||||
"""
|
||||
A = []
|
||||
for u in graph:
|
||||
u.key = math.inf
|
||||
u.pi = None
|
||||
root.key = 0
|
||||
Q = graph[:]
|
||||
while Q:
|
||||
u = min(Q)
|
||||
Q.remove(u)
|
||||
for v in u.neighbors:
|
||||
if (v in Q) and (u.edges[v.id] < v.key):
|
||||
v.pi = u
|
||||
v.key = u.edges[v.id]
|
||||
for i in range(1, len(graph)):
|
||||
A.append([graph[i].id, graph[i].pi.id])
|
||||
return(A)
|
Loading…
Reference in New Issue
Block a user