mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 16:27:02 +00:00
Euler Problem 27 solution script Added (#1466)
* Add files via upload * Update DIRECTORY.md * Create sol1.py * Update sol1.py * Create __init__.py * Update DIRECTORY.md * Delete isotonic.py * Update sol1.py * Problem_27_project_euler * project_euler/Problem_27/sol1.py * project_euler/Problem_27/sol1.py * project_euler/problem_27/ * project_euler/problem_27 * project_euler/problem_27 * update sol1 of Euler Problem 27 solution script Added * Remove slow test, wrap long comments, format with psf/black * Delete __init__.py * Add type hints * Add doctests to function is_prime() * Rename project_euler/problem_27/project_euler/problem_27/sol1.pysol1.py to project_euler/problem_27/problem_27_sol1.py
This commit is contained in:
parent
357dbd4ada
commit
8a5633a233
69
project_euler/problem_27/problem_27_sol1.py
Normal file
69
project_euler/problem_27/problem_27_sol1.py
Normal file
|
@ -0,0 +1,69 @@
|
|||
"""
|
||||
Euler discovered the remarkable quadratic formula:
|
||||
n2 + n + 41
|
||||
It turns out that the formula will produce 40 primes for the consecutive values
|
||||
n = 0 to 39. However, when n = 40, 402 + 40 + 41 = 40(40 + 1) + 41 is divisible
|
||||
by 41, and certainly when n = 41, 412 + 41 + 41 is clearly divisible by 41.
|
||||
The incredible formula n2 − 79n + 1601 was discovered, which produces 80 primes
|
||||
for the consecutive values n = 0 to 79. The product of the coefficients, −79 and
|
||||
1601, is −126479.
|
||||
Considering quadratics of the form:
|
||||
n² + an + b, where |a| < 1000 and |b| < 1000
|
||||
where |n| is the modulus/absolute value of ne.g. |11| = 11 and |−4| = 4
|
||||
Find the product of the coefficients, a and b, for the quadratic expression that
|
||||
produces the maximum number of primes for consecutive values of n, starting with
|
||||
n = 0.
|
||||
"""
|
||||
|
||||
import math
|
||||
|
||||
|
||||
def is_prime(k: int) -> bool:
|
||||
"""
|
||||
Determine if a number is prime
|
||||
>>> is_prime(10)
|
||||
False
|
||||
>>> is_prime(11)
|
||||
True
|
||||
"""
|
||||
if k < 2 or k % 2 == 0:
|
||||
return False
|
||||
elif k == 2:
|
||||
return True
|
||||
else:
|
||||
for x in range(3, int(math.sqrt(k) + 1), 2):
|
||||
if k % x == 0:
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def solution(a_limit: int, b_limit: int) -> int:
|
||||
"""
|
||||
>>> solution(1000, 1000)
|
||||
-59231
|
||||
>>> solution(200, 1000)
|
||||
-59231
|
||||
>>> solution(200, 200)
|
||||
-4925
|
||||
>>> solution(-1000, 1000)
|
||||
0
|
||||
>>> solution(-1000, -1000)
|
||||
0
|
||||
"""
|
||||
longest = [0, 0, 0] # length, a, b
|
||||
for a in range((a_limit * -1) + 1, a_limit):
|
||||
for b in range(2, b_limit):
|
||||
if is_prime(b):
|
||||
count = 0
|
||||
n = 0
|
||||
while is_prime((n ** 2) + (a * n) + b):
|
||||
count += 1
|
||||
n += 1
|
||||
if count > longest[0]:
|
||||
longest = [count, a, b]
|
||||
ans = longest[1] * longest[2]
|
||||
return ans
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(solution(1000, 1000))
|
Loading…
Reference in New Issue
Block a user