Added Lstm example for stock predection (#1908)

* Added Lstm example for stock predection

* Changes after review

* changes after build failed

* Add Kiera’s to requirements.txt

* requirements.txt: Add keras and tensorflow

* psf/black

Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
Jeffin Francis 2020-05-07 12:23:44 +05:30 committed by GitHub
parent 4acc28ba55
commit 8a8527f1bd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 1317 additions and 1 deletions

View File

@ -0,0 +1,56 @@
"""
Create a Long Short Term Memory (LSTM) network model
An LSTM is a type of Recurrent Neural Network (RNN) as discussed at:
* http://colah.github.io/posts/2015-08-Understanding-LSTMs
* https://en.wikipedia.org/wiki/Long_short-term_memory
"""
from keras.layers import Dense, LSTM
from keras.models import Sequential
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
if __name__ == "__main__":
"""
First part of building a model is to get the data and prepare
it for our model. You can use any dataset for stock prediction
make sure you set the price column on line number 21. Here we
use a dataset which have the price on 3rd column.
"""
df = pd.read_csv("sample_data.csv", header=None)
len_data = df.shape[:1][0]
# If you're using some other dataset input the target column
actual_data = df.iloc[:, 1:2]
actual_data = actual_data.values.reshape(len_data, 1)
actual_data = MinMaxScaler().fit_transform(actual_data)
look_back = 10
forward_days = 5
periods = 20
division = len_data - periods * look_back
train_data = actual_data[:division]
test_data = actual_data[division - look_back :]
train_x, train_y = [], []
test_x, test_y = [], []
for i in range(0, len(train_data) - forward_days - look_back + 1):
train_x.append(train_data[i : i + look_back])
train_y.append(train_data[i + look_back : i + look_back + forward_days])
for i in range(0, len(test_data) - forward_days - look_back + 1):
test_x.append(test_data[i : i + look_back])
test_y.append(test_data[i + look_back : i + look_back + forward_days])
x_train = np.array(train_x)
x_test = np.array(test_x)
y_train = np.array([list(i.ravel()) for i in train_y])
y_test = np.array([list(i.ravel()) for i in test_y])
model = Sequential()
model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True))
model.add(LSTM(64, input_shape=(128, 1)))
model.add(Dense(forward_days))
model.compile(loss="mean_squared_error", optimizer="adam")
history = model.fit(
x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4
)
pred = model.predict(x_test)

File diff suppressed because it is too large Load Diff

View File

@ -2,6 +2,7 @@ beautifulsoup4
black
fake_useragent
flake8
keras
matplotlib
mypy
numpy>=1.17.4
@ -14,5 +15,5 @@ requests
scikit-fuzzy
sklearn
sympy
tensorflow; python_version < '3.8'
tensorflow
xgboost