mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-02-26 10:58:40 +00:00
Merge branch 'TheAlgorithms:master' into master
This commit is contained in:
commit
8b44f10376
@ -1,76 +1,84 @@
|
||||
#!/usr/bin/python
|
||||
"""
|
||||
Author Anurag Kumar | anuragkumarak95@gmail.com | git/anuragkumarak95
|
||||
|
||||
"""Author Anurag Kumar | anuragkumarak95@gmail.com | git/anuragkumarak95
|
||||
Simple example of fractal generation using recursion.
|
||||
|
||||
Simple example of Fractal generation using recursive function.
|
||||
What is the Sierpiński Triangle?
|
||||
The Sierpiński triangle (sometimes spelled Sierpinski), also called the
|
||||
Sierpiński gasket or Sierpiński sieve, is a fractal attractive fixed set with
|
||||
the overall shape of an equilateral triangle, subdivided recursively into
|
||||
smaller equilateral triangles. Originally constructed as a curve, this is one of
|
||||
the basic examples of self-similar sets—that is, it is a mathematically
|
||||
generated pattern that is reproducible at any magnification or reduction. It is
|
||||
named after the Polish mathematician Wacław Sierpiński, but appeared as a
|
||||
decorative pattern many centuries before the work of Sierpiński.
|
||||
|
||||
What is Sierpinski Triangle?
|
||||
>>The Sierpinski triangle (also with the original orthography Sierpinski), also called
|
||||
the Sierpinski gasket or the Sierpinski Sieve, is a fractal and attractive fixed set
|
||||
with the overall shape of an equilateral triangle, subdivided recursively into smaller
|
||||
equilateral triangles. Originally constructed as a curve, this is one of the basic
|
||||
examples of self-similar sets, i.e., it is a mathematically generated pattern that can
|
||||
be reproducible at any magnification or reduction. It is named after the Polish
|
||||
mathematician Wacław Sierpinski, but appeared as a decorative pattern many centuries
|
||||
prior to the work of Sierpinski.
|
||||
|
||||
Requirements(pip):
|
||||
- turtle
|
||||
|
||||
Python:
|
||||
- 2.6
|
||||
|
||||
Usage:
|
||||
- $python sierpinski_triangle.py <int:depth_for_fractal>
|
||||
|
||||
Credits: This code was written by editing the code from
|
||||
https://www.riannetrujillo.com/blog/python-fractal/
|
||||
Usage: python sierpinski_triangle.py <int:depth_for_fractal>
|
||||
|
||||
Credits:
|
||||
The above description is taken from
|
||||
https://en.wikipedia.org/wiki/Sierpi%C5%84ski_triangle
|
||||
This code was written by editing the code from
|
||||
https://www.riannetrujillo.com/blog/python-fractal/
|
||||
"""
|
||||
import sys
|
||||
import turtle
|
||||
|
||||
PROGNAME = "Sierpinski Triangle"
|
||||
|
||||
points = [[-175, -125], [0, 175], [175, -125]] # size of triangle
|
||||
def get_mid(p1: tuple[float, float], p2: tuple[float, float]) -> tuple[float, float]:
|
||||
"""
|
||||
Find the midpoint of two points
|
||||
|
||||
>>> get_mid((0, 0), (2, 2))
|
||||
(1.0, 1.0)
|
||||
>>> get_mid((-3, -3), (3, 3))
|
||||
(0.0, 0.0)
|
||||
>>> get_mid((1, 0), (3, 2))
|
||||
(2.0, 1.0)
|
||||
>>> get_mid((0, 0), (1, 1))
|
||||
(0.5, 0.5)
|
||||
>>> get_mid((0, 0), (0, 0))
|
||||
(0.0, 0.0)
|
||||
"""
|
||||
return (p1[0] + p2[0]) / 2, (p1[1] + p2[1]) / 2
|
||||
|
||||
|
||||
def get_mid(p1, p2):
|
||||
return ((p1[0] + p2[0]) / 2, (p1[1] + p2[1]) / 2) # find midpoint
|
||||
|
||||
|
||||
def triangle(points, depth):
|
||||
|
||||
def triangle(
|
||||
vertex1: tuple[float, float],
|
||||
vertex2: tuple[float, float],
|
||||
vertex3: tuple[float, float],
|
||||
depth: int,
|
||||
) -> None:
|
||||
"""
|
||||
Recursively draw the Sierpinski triangle given the vertices of the triangle
|
||||
and the recursion depth
|
||||
"""
|
||||
my_pen.up()
|
||||
my_pen.goto(points[0][0], points[0][1])
|
||||
my_pen.goto(vertex1[0], vertex1[1])
|
||||
my_pen.down()
|
||||
my_pen.goto(points[1][0], points[1][1])
|
||||
my_pen.goto(points[2][0], points[2][1])
|
||||
my_pen.goto(points[0][0], points[0][1])
|
||||
my_pen.goto(vertex2[0], vertex2[1])
|
||||
my_pen.goto(vertex3[0], vertex3[1])
|
||||
my_pen.goto(vertex1[0], vertex1[1])
|
||||
|
||||
if depth > 0:
|
||||
triangle(
|
||||
[points[0], get_mid(points[0], points[1]), get_mid(points[0], points[2])],
|
||||
depth - 1,
|
||||
)
|
||||
triangle(
|
||||
[points[1], get_mid(points[0], points[1]), get_mid(points[1], points[2])],
|
||||
depth - 1,
|
||||
)
|
||||
triangle(
|
||||
[points[2], get_mid(points[2], points[1]), get_mid(points[0], points[2])],
|
||||
depth - 1,
|
||||
)
|
||||
if depth == 0:
|
||||
return
|
||||
|
||||
triangle(vertex1, get_mid(vertex1, vertex2), get_mid(vertex1, vertex3), depth - 1)
|
||||
triangle(vertex2, get_mid(vertex1, vertex2), get_mid(vertex2, vertex3), depth - 1)
|
||||
triangle(vertex3, get_mid(vertex3, vertex2), get_mid(vertex1, vertex3), depth - 1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if len(sys.argv) != 2:
|
||||
raise ValueError(
|
||||
"right format for using this script: "
|
||||
"$python fractals.py <int:depth_for_fractal>"
|
||||
"Correct format for using this script: "
|
||||
"python fractals.py <int:depth_for_fractal>"
|
||||
)
|
||||
my_pen = turtle.Turtle()
|
||||
my_pen.ht()
|
||||
my_pen.speed(5)
|
||||
my_pen.pencolor("red")
|
||||
triangle(points, int(sys.argv[1]))
|
||||
|
||||
vertices = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle
|
||||
triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
|
||||
|
@ -1,76 +1,86 @@
|
||||
# Required imports to run this file
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
|
||||
# weighted matrix
|
||||
def weighted_matrix(point: np.mat, training_data_x: np.mat, bandwidth: float) -> np.mat:
|
||||
def weighted_matrix(
|
||||
point: np.array, training_data_x: np.array, bandwidth: float
|
||||
) -> np.array:
|
||||
"""
|
||||
Calculate the weight for every point in the
|
||||
data set. It takes training_point , query_point, and tau
|
||||
Here Tau is not a fixed value it can be varied depends on output.
|
||||
tau --> bandwidth
|
||||
xmat -->Training data
|
||||
point --> the x where we want to make predictions
|
||||
>>> weighted_matrix(np.array([1., 1.]),np.mat([[16.99, 10.34], [21.01,23.68],
|
||||
... [24.59,25.69]]), 0.6)
|
||||
matrix([[1.43807972e-207, 0.00000000e+000, 0.00000000e+000],
|
||||
[0.00000000e+000, 0.00000000e+000, 0.00000000e+000],
|
||||
[0.00000000e+000, 0.00000000e+000, 0.00000000e+000]])
|
||||
Calculate the weight for every point in the data set.
|
||||
point --> the x value at which we want to make predictions
|
||||
>>> weighted_matrix(
|
||||
... np.array([1., 1.]),
|
||||
... np.array([[16.99, 10.34], [21.01,23.68], [24.59,25.69]]),
|
||||
... 0.6
|
||||
... )
|
||||
array([[1.43807972e-207, 0.00000000e+000, 0.00000000e+000],
|
||||
[0.00000000e+000, 0.00000000e+000, 0.00000000e+000],
|
||||
[0.00000000e+000, 0.00000000e+000, 0.00000000e+000]])
|
||||
"""
|
||||
# m is the number of training samples
|
||||
m, n = np.shape(training_data_x)
|
||||
# Initializing weights as identity matrix
|
||||
weights = np.mat(np.eye(m))
|
||||
m, _ = np.shape(training_data_x) # m is the number of training samples
|
||||
weights = np.eye(m) # Initializing weights as identity matrix
|
||||
|
||||
# calculating weights for all training examples [x(i)'s]
|
||||
for j in range(m):
|
||||
diff = point - training_data_x[j]
|
||||
weights[j, j] = np.exp(diff * diff.T / (-2.0 * bandwidth**2))
|
||||
weights[j, j] = np.exp(diff @ diff.T / (-2.0 * bandwidth**2))
|
||||
return weights
|
||||
|
||||
|
||||
def local_weight(
|
||||
point: np.mat, training_data_x: np.mat, training_data_y: np.mat, bandwidth: float
|
||||
) -> np.mat:
|
||||
point: np.array,
|
||||
training_data_x: np.array,
|
||||
training_data_y: np.array,
|
||||
bandwidth: float,
|
||||
) -> np.array:
|
||||
"""
|
||||
Calculate the local weights using the weight_matrix function on training data.
|
||||
Return the weighted matrix.
|
||||
>>> local_weight(np.array([1., 1.]),np.mat([[16.99, 10.34], [21.01,23.68],
|
||||
... [24.59,25.69]]),np.mat([[1.01, 1.66, 3.5]]), 0.6)
|
||||
matrix([[0.00873174],
|
||||
[0.08272556]])
|
||||
>>> local_weight(
|
||||
... np.array([1., 1.]),
|
||||
... np.array([[16.99, 10.34], [21.01,23.68], [24.59,25.69]]),
|
||||
... np.array([[1.01, 1.66, 3.5]]),
|
||||
... 0.6
|
||||
... )
|
||||
array([[0.00873174],
|
||||
[0.08272556]])
|
||||
"""
|
||||
weight = weighted_matrix(point, training_data_x, bandwidth)
|
||||
w = (training_data_x.T * (weight * training_data_x)).I * (
|
||||
training_data_x.T * weight * training_data_y.T
|
||||
w = np.linalg.inv(training_data_x.T @ (weight @ training_data_x)) @ (
|
||||
training_data_x.T @ weight @ training_data_y.T
|
||||
)
|
||||
|
||||
return w
|
||||
|
||||
|
||||
def local_weight_regression(
|
||||
training_data_x: np.mat, training_data_y: np.mat, bandwidth: float
|
||||
) -> np.mat:
|
||||
training_data_x: np.array, training_data_y: np.array, bandwidth: float
|
||||
) -> np.array:
|
||||
"""
|
||||
Calculate predictions for each data point on axis.
|
||||
>>> local_weight_regression(np.mat([[16.99, 10.34], [21.01,23.68],
|
||||
... [24.59,25.69]]),np.mat([[1.01, 1.66, 3.5]]), 0.6)
|
||||
Calculate predictions for each data point on axis
|
||||
>>> local_weight_regression(
|
||||
... np.array([[16.99, 10.34], [21.01, 23.68], [24.59, 25.69]]),
|
||||
... np.array([[1.01, 1.66, 3.5]]),
|
||||
... 0.6
|
||||
... )
|
||||
array([1.07173261, 1.65970737, 3.50160179])
|
||||
"""
|
||||
m, n = np.shape(training_data_x)
|
||||
m, _ = np.shape(training_data_x)
|
||||
ypred = np.zeros(m)
|
||||
|
||||
for i, item in enumerate(training_data_x):
|
||||
ypred[i] = item * local_weight(
|
||||
ypred[i] = item @ local_weight(
|
||||
item, training_data_x, training_data_y, bandwidth
|
||||
)
|
||||
|
||||
return ypred
|
||||
|
||||
|
||||
def load_data(dataset_name: str, cola_name: str, colb_name: str) -> np.mat:
|
||||
def load_data(
|
||||
dataset_name: str, cola_name: str, colb_name: str
|
||||
) -> tuple[np.array, np.array, np.array, np.array]:
|
||||
"""
|
||||
Function used for loading data from the seaborn splitting into x and y points
|
||||
Load data from seaborn and split it into x and y points
|
||||
"""
|
||||
import seaborn as sns
|
||||
|
||||
@ -78,23 +88,25 @@ def load_data(dataset_name: str, cola_name: str, colb_name: str) -> np.mat:
|
||||
col_a = np.array(data[cola_name]) # total_bill
|
||||
col_b = np.array(data[colb_name]) # tip
|
||||
|
||||
mcol_a = np.mat(col_a)
|
||||
mcol_b = np.mat(col_b)
|
||||
mcol_a = col_a.copy()
|
||||
mcol_b = col_b.copy()
|
||||
|
||||
m = np.shape(mcol_b)[1]
|
||||
one = np.ones((1, m), dtype=int)
|
||||
one = np.ones(np.shape(mcol_b)[0], dtype=int)
|
||||
|
||||
# horizontal stacking
|
||||
training_data_x = np.hstack((one.T, mcol_a.T))
|
||||
# pairing elements of one and mcol_a
|
||||
training_data_x = np.column_stack((one, mcol_a))
|
||||
|
||||
return training_data_x, mcol_b, col_a, col_b
|
||||
|
||||
|
||||
def get_preds(training_data_x: np.mat, mcol_b: np.mat, tau: float) -> np.ndarray:
|
||||
def get_preds(training_data_x: np.array, mcol_b: np.array, tau: float) -> np.array:
|
||||
"""
|
||||
Get predictions with minimum error for each training data
|
||||
>>> get_preds(np.mat([[16.99, 10.34], [21.01,23.68],
|
||||
... [24.59,25.69]]),np.mat([[1.01, 1.66, 3.5]]), 0.6)
|
||||
>>> get_preds(
|
||||
... np.array([[16.99, 10.34], [21.01, 23.68], [24.59, 25.69]]),
|
||||
... np.array([[1.01, 1.66, 3.5]]),
|
||||
... 0.6
|
||||
... )
|
||||
array([1.07173261, 1.65970737, 3.50160179])
|
||||
"""
|
||||
ypred = local_weight_regression(training_data_x, mcol_b, tau)
|
||||
@ -102,15 +114,15 @@ def get_preds(training_data_x: np.mat, mcol_b: np.mat, tau: float) -> np.ndarray
|
||||
|
||||
|
||||
def plot_preds(
|
||||
training_data_x: np.mat,
|
||||
predictions: np.ndarray,
|
||||
col_x: np.ndarray,
|
||||
col_y: np.ndarray,
|
||||
training_data_x: np.array,
|
||||
predictions: np.array,
|
||||
col_x: np.array,
|
||||
col_y: np.array,
|
||||
cola_name: str,
|
||||
colb_name: str,
|
||||
) -> plt.plot:
|
||||
"""
|
||||
This function used to plot predictions and display the graph
|
||||
Plot predictions and display the graph
|
||||
"""
|
||||
xsort = training_data_x.copy()
|
||||
xsort.sort(axis=0)
|
||||
@ -128,6 +140,10 @@ def plot_preds(
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
|
||||
training_data_x, mcol_b, col_a, col_b = load_data("tips", "total_bill", "tip")
|
||||
predictions = get_preds(training_data_x, mcol_b, 0.5)
|
||||
plot_preds(training_data_x, predictions, col_a, col_b, "total_bill", "tip")
|
||||
|
Loading…
x
Reference in New Issue
Block a user