From 8bbe8caa256882ef2ebdbb3274e6f99f804716bd Mon Sep 17 00:00:00 2001 From: Scarfinos <158184182+Scarfinos@users.noreply.github.com> Date: Fri, 27 Dec 2024 23:40:35 +0100 Subject: [PATCH] Improve test coverage for matrix exponentiation (#12388) * #9943 : Adding coverage test for basic_graphs.py * #9943 : Adding coverage test for basic_graphs.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Solve problem of line too long * Improving coverage for matrix_exponentiation.py * fix more than one file * Update matrix_exponentiation.py * Update matrix_exponentiation.py --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Maxim Smolskiy --- maths/matrix_exponentiation.py | 36 ++++++++++++++++++++++++++++++---- 1 file changed, 32 insertions(+), 4 deletions(-) diff --git a/maths/matrix_exponentiation.py b/maths/matrix_exponentiation.py index 7c37151c8..7cdac9d34 100644 --- a/maths/matrix_exponentiation.py +++ b/maths/matrix_exponentiation.py @@ -39,6 +39,21 @@ def modular_exponentiation(a, b): def fibonacci_with_matrix_exponentiation(n, f1, f2): + """ + Returns the nth number of the Fibonacci sequence that + starts with f1 and f2 + Uses the matrix exponentiation + >>> fibonacci_with_matrix_exponentiation(1, 5, 6) + 5 + >>> fibonacci_with_matrix_exponentiation(2, 10, 11) + 11 + >>> fibonacci_with_matrix_exponentiation(13, 0, 1) + 144 + >>> fibonacci_with_matrix_exponentiation(10, 5, 9) + 411 + >>> fibonacci_with_matrix_exponentiation(9, 2, 3) + 89 + """ # Trivial Cases if n == 1: return f1 @@ -50,21 +65,34 @@ def fibonacci_with_matrix_exponentiation(n, f1, f2): def simple_fibonacci(n, f1, f2): + """ + Returns the nth number of the Fibonacci sequence that + starts with f1 and f2 + Uses the definition + >>> simple_fibonacci(1, 5, 6) + 5 + >>> simple_fibonacci(2, 10, 11) + 11 + >>> simple_fibonacci(13, 0, 1) + 144 + >>> simple_fibonacci(10, 5, 9) + 411 + >>> simple_fibonacci(9, 2, 3) + 89 + """ # Trivial Cases if n == 1: return f1 elif n == 2: return f2 - fn_1 = f1 - fn_2 = f2 n -= 2 while n > 0: - fn_1, fn_2 = fn_1 + fn_2, fn_1 + f2, f1 = f1 + f2, f2 n -= 1 - return fn_1 + return f2 def matrix_exponentiation_time():