Merge branch 'TheAlgorithms:master' into master

This commit is contained in:
tkgowtham 2024-10-02 15:40:31 +05:30 committed by GitHub
commit 8d86c62d56
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 164 additions and 6 deletions

View File

@ -20,7 +20,7 @@ jobs:
key: ${{ runner.os }}-pip-${{ hashFiles('requirements.txt') }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip setuptools six wheel
python -m pip install --upgrade pip setuptools wheel
python -m pip install pytest-cov -r requirements.txt
- name: Run tests
# TODO: #8818 Re-enable quantum tests

View File

@ -22,6 +22,7 @@
* [Rat In Maze](backtracking/rat_in_maze.py)
* [Sudoku](backtracking/sudoku.py)
* [Sum Of Subsets](backtracking/sum_of_subsets.py)
* [Word Ladder](backtracking/word_ladder.py)
* [Word Search](backtracking/word_search.py)
## Bit Manipulation

100
backtracking/word_ladder.py Normal file
View File

@ -0,0 +1,100 @@
"""
Word Ladder is a classic problem in computer science.
The problem is to transform a start word into an end word
by changing one letter at a time.
Each intermediate word must be a valid word from a given list of words.
The goal is to find a transformation sequence
from the start word to the end word.
Wikipedia: https://en.wikipedia.org/wiki/Word_ladder
"""
import string
def backtrack(
current_word: str, path: list[str], end_word: str, word_set: set[str]
) -> list[str]:
"""
Helper function to perform backtracking to find the transformation
from the current_word to the end_word.
Parameters:
current_word (str): The current word in the transformation sequence.
path (list[str]): The list of transformations from begin_word to current_word.
end_word (str): The target word for transformation.
word_set (set[str]): The set of valid words for transformation.
Returns:
list[str]: The list of transformations from begin_word to end_word.
Returns an empty list if there is no valid
transformation from current_word to end_word.
Example:
>>> backtrack("hit", ["hit"], "cog", {"hot", "dot", "dog", "lot", "log", "cog"})
['hit', 'hot', 'dot', 'lot', 'log', 'cog']
>>> backtrack("hit", ["hit"], "cog", {"hot", "dot", "dog", "lot", "log"})
[]
>>> backtrack("lead", ["lead"], "gold", {"load", "goad", "gold", "lead", "lord"})
['lead', 'lead', 'load', 'goad', 'gold']
>>> backtrack("game", ["game"], "code", {"came", "cage", "code", "cade", "gave"})
['game', 'came', 'cade', 'code']
"""
# Base case: If the current word is the end word, return the path
if current_word == end_word:
return path
# Try all possible single-letter transformations
for i in range(len(current_word)):
for c in string.ascii_lowercase: # Try changing each letter
transformed_word = current_word[:i] + c + current_word[i + 1 :]
if transformed_word in word_set:
word_set.remove(transformed_word)
# Recur with the new word added to the path
result = backtrack(
transformed_word, [*path, transformed_word], end_word, word_set
)
if result: # valid transformation found
return result
word_set.add(transformed_word) # backtrack
return [] # No valid transformation found
def word_ladder(begin_word: str, end_word: str, word_set: set[str]) -> list[str]:
"""
Solve the Word Ladder problem using Backtracking and return
the list of transformations from begin_word to end_word.
Parameters:
begin_word (str): The word from which the transformation starts.
end_word (str): The target word for transformation.
word_list (list[str]): The list of valid words for transformation.
Returns:
list[str]: The list of transformations from begin_word to end_word.
Returns an empty list if there is no valid transformation.
Example:
>>> word_ladder("hit", "cog", ["hot", "dot", "dog", "lot", "log", "cog"])
['hit', 'hot', 'dot', 'lot', 'log', 'cog']
>>> word_ladder("hit", "cog", ["hot", "dot", "dog", "lot", "log"])
[]
>>> word_ladder("lead", "gold", ["load", "goad", "gold", "lead", "lord"])
['lead', 'lead', 'load', 'goad', 'gold']
>>> word_ladder("game", "code", ["came", "cage", "code", "cade", "gave"])
['game', 'came', 'cade', 'code']
"""
if end_word not in word_set: # no valid transformation possible
return []
# Perform backtracking starting from the begin_word
return backtrack(begin_word, [begin_word], end_word, word_set)

View File

@ -13,7 +13,21 @@ from dataclasses import dataclass
@dataclass
class Node:
"""
A Node has data variable and pointers to Nodes to its left and right.
A Node represents an element of a binary tree, which contains:
Attributes:
data: The value stored in the node (int).
left: Pointer to the left child node (Node or None).
right: Pointer to the right child node (Node or None).
Example:
>>> node = Node(1, Node(2), Node(3))
>>> node.data
1
>>> node.left.data
2
>>> node.right.data
3
"""
data: int
@ -24,12 +38,25 @@ class Node:
def make_symmetric_tree() -> Node:
r"""
Create a symmetric tree for testing.
The tree looks like this:
1
/ \
2 2
/ \ / \
3 4 4 3
Returns:
Node: Root node of a symmetric tree.
Example:
>>> tree = make_symmetric_tree()
>>> tree.data
1
>>> tree.left.data == tree.right.data
True
>>> tree.left.left.data == tree.right.right.data
True
"""
root = Node(1)
root.left = Node(2)
@ -43,13 +70,26 @@ def make_symmetric_tree() -> Node:
def make_asymmetric_tree() -> Node:
r"""
Create a asymmetric tree for testing.
Create an asymmetric tree for testing.
The tree looks like this:
1
/ \
2 2
/ \ / \
3 4 3 4
Returns:
Node: Root node of an asymmetric tree.
Example:
>>> tree = make_asymmetric_tree()
>>> tree.data
1
>>> tree.left.data == tree.right.data
True
>>> tree.left.left.data == tree.right.right.data
False
"""
root = Node(1)
root.left = Node(2)
@ -63,7 +103,15 @@ def make_asymmetric_tree() -> Node:
def is_symmetric_tree(tree: Node) -> bool:
"""
Test cases for is_symmetric_tree function
Check if a binary tree is symmetric (i.e., a mirror of itself).
Parameters:
tree: The root node of the binary tree.
Returns:
bool: True if the tree is symmetric, False otherwise.
Example:
>>> is_symmetric_tree(make_symmetric_tree())
True
>>> is_symmetric_tree(make_asymmetric_tree())
@ -76,8 +124,17 @@ def is_symmetric_tree(tree: Node) -> bool:
def is_mirror(left: Node | None, right: Node | None) -> bool:
"""
Check if two subtrees are mirror images of each other.
Parameters:
left: The root node of the left subtree.
right: The root node of the right subtree.
Returns:
bool: True if the two subtrees are mirrors of each other, False otherwise.
Example:
>>> tree1 = make_symmetric_tree()
>>> tree1.right.right = Node(3)
>>> is_mirror(tree1.left, tree1.right)
True
>>> tree2 = make_asymmetric_tree()
@ -91,7 +148,7 @@ def is_mirror(left: Node | None, right: Node | None) -> bool:
# One side is empty while the other is not, which is not symmetric.
return False
if left.data == right.data:
# The values match, so check the subtree
# The values match, so check the subtrees recursively.
return is_mirror(left.left, right.right) and is_mirror(left.right, right.left)
return False