mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-02-07 18:10:55 +00:00
Resolved ruff checks
This commit is contained in:
parent
a2d07af8c1
commit
8f1f091aa4
|
@ -68,7 +68,7 @@ class RidgeRegression:
|
||||||
m, n = features_scaled.shape
|
m, n = features_scaled.shape
|
||||||
self.theta = np.zeros(n) # Initialize weights to zeros
|
self.theta = np.zeros(n) # Initialize weights to zeros
|
||||||
|
|
||||||
for i in range(self.iterations):
|
for _ in range(self.iterations):
|
||||||
predictions = features_scaled.dot(self.theta)
|
predictions = features_scaled.dot(self.theta)
|
||||||
error = predictions - target
|
error = predictions - target
|
||||||
|
|
||||||
|
@ -149,21 +149,21 @@ if __name__ == "__main__":
|
||||||
data = pd.read_csv(
|
data = pd.read_csv(
|
||||||
"https://raw.githubusercontent.com/yashLadha/The_Math_of_Intelligence/master/Week1/ADRvsRating.csv"
|
"https://raw.githubusercontent.com/yashLadha/The_Math_of_Intelligence/master/Week1/ADRvsRating.csv"
|
||||||
)
|
)
|
||||||
x = data[["Rating"]].to_numpy() # Feature: Rating
|
data_x = data[["Rating"]].to_numpy() # Feature: Rating
|
||||||
y = data["ADR"].to_numpy() # Target: ADR
|
data_y = data["ADR"].to_numpy() # Target: ADR
|
||||||
y = (y - np.mean(y)) / np.std(y)
|
data_y = (data_y - np.mean(data_y)) / np.std(data_y)
|
||||||
|
|
||||||
# Add bias term (intercept) to the feature matrix
|
# Add bias term (intercept) to the feature matrix
|
||||||
x = np.c_[np.ones(X.shape[0]), x] # Add intercept term
|
data_x = np.c_[np.ones(data_x.shape[0]), data_x] # Add intercept term
|
||||||
|
|
||||||
# Initialize and train the Ridge Regression model
|
# Initialize and train the Ridge Regression model
|
||||||
model = RidgeRegression(alpha=0.01, lambda_=0.1, iterations=1000)
|
model = RidgeRegression(alpha=0.01, lambda_=0.1, iterations=1000)
|
||||||
model.fit(x, y)
|
model.fit(data_x, data_y)
|
||||||
|
|
||||||
# Predictions
|
# Predictions
|
||||||
predictions = model.predict(x)
|
predictions = model.predict(data_x)
|
||||||
|
|
||||||
# Results
|
# Results
|
||||||
print("Optimized Weights:", model.theta)
|
print("Optimized Weights:", model.theta)
|
||||||
print("Cost:", model.compute_cost(x, y))
|
print("Cost:", model.compute_cost(data_x, data_y))
|
||||||
print("Mean Absolute Error:", model.mean_absolute_error(y, predictions))
|
print("Mean Absolute Error:", model.mean_absolute_error(data_y, predictions))
|
||||||
|
|
Loading…
Reference in New Issue
Block a user