mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-31 06:33:44 +00:00
Resolved ruff checks
This commit is contained in:
parent
a2d07af8c1
commit
8f1f091aa4
|
@ -68,7 +68,7 @@ class RidgeRegression:
|
|||
m, n = features_scaled.shape
|
||||
self.theta = np.zeros(n) # Initialize weights to zeros
|
||||
|
||||
for i in range(self.iterations):
|
||||
for _ in range(self.iterations):
|
||||
predictions = features_scaled.dot(self.theta)
|
||||
error = predictions - target
|
||||
|
||||
|
@ -149,21 +149,21 @@ if __name__ == "__main__":
|
|||
data = pd.read_csv(
|
||||
"https://raw.githubusercontent.com/yashLadha/The_Math_of_Intelligence/master/Week1/ADRvsRating.csv"
|
||||
)
|
||||
x = data[["Rating"]].to_numpy() # Feature: Rating
|
||||
y = data["ADR"].to_numpy() # Target: ADR
|
||||
y = (y - np.mean(y)) / np.std(y)
|
||||
data_x = data[["Rating"]].to_numpy() # Feature: Rating
|
||||
data_y = data["ADR"].to_numpy() # Target: ADR
|
||||
data_y = (data_y - np.mean(data_y)) / np.std(data_y)
|
||||
|
||||
# Add bias term (intercept) to the feature matrix
|
||||
x = np.c_[np.ones(X.shape[0]), x] # Add intercept term
|
||||
data_x = np.c_[np.ones(data_x.shape[0]), data_x] # Add intercept term
|
||||
|
||||
# Initialize and train the Ridge Regression model
|
||||
model = RidgeRegression(alpha=0.01, lambda_=0.1, iterations=1000)
|
||||
model.fit(x, y)
|
||||
model.fit(data_x, data_y)
|
||||
|
||||
# Predictions
|
||||
predictions = model.predict(x)
|
||||
predictions = model.predict(data_x)
|
||||
|
||||
# Results
|
||||
print("Optimized Weights:", model.theta)
|
||||
print("Cost:", model.compute_cost(x, y))
|
||||
print("Mean Absolute Error:", model.mean_absolute_error(y, predictions))
|
||||
print("Cost:", model.compute_cost(data_x, data_y))
|
||||
print("Mean Absolute Error:", model.mean_absolute_error(data_y, predictions))
|
||||
|
|
Loading…
Reference in New Issue
Block a user