mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 16:27:02 +00:00
Create dinic.py (#1396)
* Create dinic.py Dinic's algorithm for maximum flow * Update dinic.py Changes made.
This commit is contained in:
parent
7444a1f069
commit
906c985de3
93
graphs/dinic.py
Normal file
93
graphs/dinic.py
Normal file
|
@ -0,0 +1,93 @@
|
|||
INF = float("inf")
|
||||
|
||||
class Dinic:
|
||||
def __init__(self, n):
|
||||
self.lvl = [0] * n
|
||||
self.ptr = [0] * n
|
||||
self.q = [0] * n
|
||||
self.adj = [[] for _ in range(n)]
|
||||
|
||||
'''
|
||||
Here we will add our edges containing with the following parameters:
|
||||
vertex closest to source, vertex closest to sink and flow capacity
|
||||
through that edge ...
|
||||
'''
|
||||
def add_edge(self, a, b, c, rcap=0):
|
||||
self.adj[a].append([b, len(self.adj[b]), c, 0])
|
||||
self.adj[b].append([a, len(self.adj[a]) - 1, rcap, 0])
|
||||
|
||||
#This is a sample depth first search to be used at max_flow
|
||||
def depth_first_search(self, vertex, sink, flow):
|
||||
if vertex == sink or not flow:
|
||||
return flow
|
||||
|
||||
for i in range(self.ptr[vertex], len(self.adj[vertex])):
|
||||
e = self.adj[vertex][i]
|
||||
if self.lvl[e[0]] == self.lvl[vertex] + 1:
|
||||
p = self.depth_first_search(e[0], sink, min(flow, e[2] - e[3]))
|
||||
if p:
|
||||
self.adj[vertex][i][3] += p
|
||||
self.adj[e[0]][e[1]][3] -= p
|
||||
return p
|
||||
self.ptr[vertex] = self.ptr[vertex] + 1
|
||||
return 0
|
||||
|
||||
#Here we calculate the flow that reaches the sink
|
||||
def max_flow(self, source, sink):
|
||||
flow, self.q[0] = 0, source
|
||||
for l in range(31): # l = 30 maybe faster for random data
|
||||
while True:
|
||||
self.lvl, self.ptr = [0] * len(self.q), [0] * len(self.q)
|
||||
qi, qe, self.lvl[source] = 0, 1, 1
|
||||
while qi < qe and not self.lvl[sink]:
|
||||
v = self.q[qi]
|
||||
qi += 1
|
||||
for e in self.adj[v]:
|
||||
if not self.lvl[e[0]] and (e[2] - e[3]) >> (30 - l):
|
||||
self.q[qe] = e[0]
|
||||
qe += 1
|
||||
self.lvl[e[0]] = self.lvl[v] + 1
|
||||
|
||||
p = self.depth_first_search(source, sink, INF)
|
||||
while p:
|
||||
flow += p
|
||||
p = self.depth_first_search(source, sink, INF)
|
||||
|
||||
if not self.lvl[sink]:
|
||||
break
|
||||
|
||||
return flow
|
||||
|
||||
#Example to use
|
||||
|
||||
'''
|
||||
Will be a bipartite graph, than it has the vertices near the source(4)
|
||||
and the vertices near the sink(4)
|
||||
'''
|
||||
#Here we make a graphs with 10 vertex(source and sink includes)
|
||||
graph = Dinic(10)
|
||||
source = 0
|
||||
sink = 9
|
||||
'''
|
||||
Now we add the vertices next to the font in the font with 1 capacity in this edge
|
||||
(source -> source vertices)
|
||||
'''
|
||||
for vertex in range(1, 5):
|
||||
graph.add_edge(source, vertex, 1)
|
||||
'''
|
||||
We will do the same thing for the vertices near the sink, but from vertex to sink
|
||||
(sink vertices -> sink)
|
||||
'''
|
||||
for vertex in range(5, 9):
|
||||
graph.add_edge(vertex, sink, 1)
|
||||
'''
|
||||
Finally we add the verices near the sink to the vertices near the source.
|
||||
(source vertices -> sink vertices)
|
||||
'''
|
||||
for vertex in range(1, 5):
|
||||
graph.add_edge(vertex, vertex+4, 1)
|
||||
|
||||
#Now we can know that is the maximum flow(source -> sink)
|
||||
print(graph.max_flow(source, sink))
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user