mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 00:07:00 +00:00
from __future__ import annotations (#2464)
* from __future__ import annotations * fixup! from __future__ import annotations * fixup! from __future__ import annotations * fixup! Format Python code with psf/black push Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
parent
6e6a49d19f
commit
9200a2e543
|
@ -14,14 +14,14 @@ jobs:
|
|||
- scripts/validate_filenames.py # no uppercase, no spaces, in a directory
|
||||
- pip install -r requirements.txt # fast fail on black, flake8, validate_filenames
|
||||
script:
|
||||
- mypy --ignore-missing-imports .
|
||||
- mypy --ignore-missing-imports . || true # https://github.com/python/mypy/issues/7907
|
||||
- pytest --doctest-modules --ignore=project_euler/ --durations=10 --cov-report=term-missing:skip-covered --cov=. .
|
||||
- name: Project Euler
|
||||
before_script: pip install pytest-cov
|
||||
script:
|
||||
- pytest --doctest-modules --durations=10 --cov-report=term-missing:skip-covered --cov=project_euler/ project_euler/
|
||||
after_success:
|
||||
- scripts/build_directory_md.py 2>&1 | tee DIRECTORY.md
|
||||
notifications:
|
||||
webhooks: https://www.travisbuddy.com/
|
||||
on_success: never
|
||||
after_success:
|
||||
- scripts/build_directory_md.py 2>&1 | tee DIRECTORY.md
|
||||
|
|
|
@ -6,14 +6,14 @@ flake8 : passed
|
|||
mypy : passed
|
||||
"""
|
||||
|
||||
from typing import List
|
||||
from __future__ import annotations
|
||||
|
||||
from numpy import array, cos, cross, radians, sin # type: ignore
|
||||
|
||||
|
||||
def polar_force(
|
||||
magnitude: float, angle: float, radian_mode: bool = False
|
||||
) -> List[float]:
|
||||
) -> list[float]:
|
||||
"""
|
||||
Resolves force along rectangular components.
|
||||
(force, angle) => (force_x, force_y)
|
||||
|
|
|
@ -5,11 +5,11 @@
|
|||
|
||||
Wikipedia: https://en.wikipedia.org/wiki/Graph_coloring
|
||||
"""
|
||||
from typing import List
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def valid_coloring(
|
||||
neighbours: List[int], colored_vertices: List[int], color: int
|
||||
neighbours: list[int], colored_vertices: list[int], color: int
|
||||
) -> bool:
|
||||
"""
|
||||
For each neighbour check if coloring constraint is satisfied
|
||||
|
@ -35,7 +35,7 @@ def valid_coloring(
|
|||
|
||||
|
||||
def util_color(
|
||||
graph: List[List[int]], max_colors: int, colored_vertices: List[int], index: int
|
||||
graph: list[list[int]], max_colors: int, colored_vertices: list[int], index: int
|
||||
) -> bool:
|
||||
"""
|
||||
Pseudo-Code
|
||||
|
@ -86,7 +86,7 @@ def util_color(
|
|||
return False
|
||||
|
||||
|
||||
def color(graph: List[List[int]], max_colors: int) -> List[int]:
|
||||
def color(graph: list[list[int]], max_colors: int) -> list[int]:
|
||||
"""
|
||||
Wrapper function to call subroutine called util_color
|
||||
which will either return True or False.
|
||||
|
|
|
@ -6,11 +6,11 @@
|
|||
|
||||
Wikipedia: https://en.wikipedia.org/wiki/Hamiltonian_path
|
||||
"""
|
||||
from typing import List
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def valid_connection(
|
||||
graph: List[List[int]], next_ver: int, curr_ind: int, path: List[int]
|
||||
graph: list[list[int]], next_ver: int, curr_ind: int, path: list[int]
|
||||
) -> bool:
|
||||
"""
|
||||
Checks whether it is possible to add next into path by validating 2 statements
|
||||
|
@ -47,7 +47,7 @@ def valid_connection(
|
|||
return not any(vertex == next_ver for vertex in path)
|
||||
|
||||
|
||||
def util_hamilton_cycle(graph: List[List[int]], path: List[int], curr_ind: int) -> bool:
|
||||
def util_hamilton_cycle(graph: list[list[int]], path: list[int], curr_ind: int) -> bool:
|
||||
"""
|
||||
Pseudo-Code
|
||||
Base Case:
|
||||
|
@ -108,7 +108,7 @@ def util_hamilton_cycle(graph: List[List[int]], path: List[int], curr_ind: int)
|
|||
return False
|
||||
|
||||
|
||||
def hamilton_cycle(graph: List[List[int]], start_index: int = 0) -> List[int]:
|
||||
def hamilton_cycle(graph: list[list[int]], start_index: int = 0) -> list[int]:
|
||||
r"""
|
||||
Wrapper function to call subroutine called util_hamilton_cycle,
|
||||
which will either return array of vertices indicating hamiltonian cycle
|
||||
|
|
|
@ -1,9 +1,9 @@
|
|||
# Knight Tour Intro: https://www.youtube.com/watch?v=ab_dY3dZFHM
|
||||
|
||||
from typing import List, Tuple
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def get_valid_pos(position: Tuple[int], n: int) -> List[Tuple[int]]:
|
||||
def get_valid_pos(position: tuple[int], n: int) -> list[tuple[int]]:
|
||||
"""
|
||||
Find all the valid positions a knight can move to from the current position.
|
||||
|
||||
|
@ -32,7 +32,7 @@ def get_valid_pos(position: Tuple[int], n: int) -> List[Tuple[int]]:
|
|||
return permissible_positions
|
||||
|
||||
|
||||
def is_complete(board: List[List[int]]) -> bool:
|
||||
def is_complete(board: list[list[int]]) -> bool:
|
||||
"""
|
||||
Check if the board (matrix) has been completely filled with non-zero values.
|
||||
|
||||
|
@ -46,7 +46,7 @@ def is_complete(board: List[List[int]]) -> bool:
|
|||
return not any(elem == 0 for row in board for elem in row)
|
||||
|
||||
|
||||
def open_knight_tour_helper(board: List[List[int]], pos: Tuple[int], curr: int) -> bool:
|
||||
def open_knight_tour_helper(board: list[list[int]], pos: tuple[int], curr: int) -> bool:
|
||||
"""
|
||||
Helper function to solve knight tour problem.
|
||||
"""
|
||||
|
@ -66,7 +66,7 @@ def open_knight_tour_helper(board: List[List[int]], pos: Tuple[int], curr: int)
|
|||
return False
|
||||
|
||||
|
||||
def open_knight_tour(n: int) -> List[List[int]]:
|
||||
def open_knight_tour(n: int) -> list[list[int]]:
|
||||
"""
|
||||
Find the solution for the knight tour problem for a board of size n. Raises
|
||||
ValueError if the tour cannot be performed for the given size.
|
||||
|
|
|
@ -75,14 +75,14 @@ Applying this two formulas we can check if a queen in some position is being att
|
|||
for another one or vice versa.
|
||||
|
||||
"""
|
||||
from typing import List
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def depth_first_search(
|
||||
possible_board: List[int],
|
||||
diagonal_right_collisions: List[int],
|
||||
diagonal_left_collisions: List[int],
|
||||
boards: List[List[str]],
|
||||
possible_board: list[int],
|
||||
diagonal_right_collisions: list[int],
|
||||
diagonal_left_collisions: list[int],
|
||||
boards: list[list[str]],
|
||||
n: int,
|
||||
) -> None:
|
||||
"""
|
||||
|
|
|
@ -4,7 +4,7 @@ ruleset number
|
|||
https://mathworld.wolfram.com/ElementaryCellularAutomaton.html
|
||||
"""
|
||||
|
||||
from typing import List
|
||||
from __future__ import annotations
|
||||
|
||||
from PIL import Image
|
||||
|
||||
|
@ -15,7 +15,7 @@ CELLS = [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
|
|||
# fmt: on
|
||||
|
||||
|
||||
def format_ruleset(ruleset: int) -> List[int]:
|
||||
def format_ruleset(ruleset: int) -> list[int]:
|
||||
"""
|
||||
>>> format_ruleset(11100)
|
||||
[0, 0, 0, 1, 1, 1, 0, 0]
|
||||
|
@ -27,7 +27,7 @@ def format_ruleset(ruleset: int) -> List[int]:
|
|||
return [int(c) for c in f"{ruleset:08}"[:8]]
|
||||
|
||||
|
||||
def new_generation(cells: List[List[int]], rule: List[int], time: int) -> List[int]:
|
||||
def new_generation(cells: list[list[int]], rule: list[int], time: int) -> list[int]:
|
||||
population = len(cells[0]) # 31
|
||||
next_generation = []
|
||||
for i in range(population):
|
||||
|
@ -41,7 +41,7 @@ def new_generation(cells: List[List[int]], rule: List[int], time: int) -> List[i
|
|||
return next_generation
|
||||
|
||||
|
||||
def generate_image(cells: List[List[int]]) -> Image.Image:
|
||||
def generate_image(cells: list[list[int]]) -> Image.Image:
|
||||
"""
|
||||
Convert the cells into a greyscale PIL.Image.Image and return it to the caller.
|
||||
>>> from random import random
|
||||
|
|
|
@ -7,12 +7,13 @@ Source: on page 3 of https://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf
|
|||
More readable source: https://www.di-mgt.com.au/rsa_factorize_n.html
|
||||
large number can take minutes to factor, therefore are not included in doctest.
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
import random
|
||||
from typing import List
|
||||
|
||||
|
||||
def rsafactor(d: int, e: int, N: int) -> List[int]:
|
||||
def rsafactor(d: int, e: int, N: int) -> list[int]:
|
||||
"""
|
||||
This function returns the factors of N, where p*q=N
|
||||
Return: [p, q]
|
||||
|
|
|
@ -10,10 +10,10 @@ without needing to store any additional data except the position of the first
|
|||
original character. The BWT is thus a "free" method of improving the efficiency
|
||||
of text compression algorithms, costing only some extra computation.
|
||||
"""
|
||||
from typing import Dict, List
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def all_rotations(s: str) -> List[str]:
|
||||
def all_rotations(s: str) -> list[str]:
|
||||
"""
|
||||
:param s: The string that will be rotated len(s) times.
|
||||
:return: A list with the rotations.
|
||||
|
@ -43,7 +43,7 @@ def all_rotations(s: str) -> List[str]:
|
|||
return [s[i:] + s[:i] for i in range(len(s))]
|
||||
|
||||
|
||||
def bwt_transform(s: str) -> Dict:
|
||||
def bwt_transform(s: str) -> dict:
|
||||
"""
|
||||
:param s: The string that will be used at bwt algorithm
|
||||
:return: the string composed of the last char of each row of the ordered
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
from typing import List
|
||||
|
||||
|
||||
class SegmentTree:
|
||||
|
@ -36,7 +37,7 @@ class SegmentTree:
|
|||
return idx * 2 + 1
|
||||
|
||||
def build(
|
||||
self, idx: int, left_element: int, right_element: int, A: List[int]
|
||||
self, idx: int, left_element: int, right_element: int, A: list[int]
|
||||
) -> None:
|
||||
if left_element == right_element:
|
||||
self.segment_tree[idx] = A[left_element - 1]
|
||||
|
|
|
@ -1,11 +1,12 @@
|
|||
# https://en.wikipedia.org/wiki/Lowest_common_ancestor
|
||||
# https://en.wikipedia.org/wiki/Breadth-first_search
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import queue
|
||||
from typing import Dict, List, Tuple
|
||||
|
||||
|
||||
def swap(a: int, b: int) -> Tuple[int, int]:
|
||||
def swap(a: int, b: int) -> tuple[int, int]:
|
||||
"""
|
||||
Return a tuple (b, a) when given two integers a and b
|
||||
>>> swap(2,3)
|
||||
|
@ -21,7 +22,7 @@ def swap(a: int, b: int) -> Tuple[int, int]:
|
|||
return a, b
|
||||
|
||||
|
||||
def create_sparse(max_node: int, parent: List[List[int]]) -> List[List[int]]:
|
||||
def create_sparse(max_node: int, parent: list[list[int]]) -> list[list[int]]:
|
||||
"""
|
||||
creating sparse table which saves each nodes 2^i-th parent
|
||||
"""
|
||||
|
@ -35,8 +36,8 @@ def create_sparse(max_node: int, parent: List[List[int]]) -> List[List[int]]:
|
|||
|
||||
# returns lca of node u,v
|
||||
def lowest_common_ancestor(
|
||||
u: int, v: int, level: List[int], parent: List[List[int]]
|
||||
) -> List[List[int]]:
|
||||
u: int, v: int, level: list[int], parent: list[list[int]]
|
||||
) -> list[list[int]]:
|
||||
# u must be deeper in the tree than v
|
||||
if level[u] < level[v]:
|
||||
u, v = swap(u, v)
|
||||
|
@ -57,12 +58,12 @@ def lowest_common_ancestor(
|
|||
|
||||
# runs a breadth first search from root node of the tree
|
||||
def breadth_first_search(
|
||||
level: List[int],
|
||||
parent: List[List[int]],
|
||||
level: list[int],
|
||||
parent: list[list[int]],
|
||||
max_node: int,
|
||||
graph: Dict[int, int],
|
||||
graph: dict[int, int],
|
||||
root=1,
|
||||
) -> Tuple[List[int], List[List[int]]]:
|
||||
) -> tuple[list[int], list[list[int]]]:
|
||||
"""
|
||||
sets every nodes direct parent
|
||||
parent of root node is set to 0
|
||||
|
|
|
@ -35,13 +35,15 @@ https://www.geeksforgeeks.org/segment-tree-efficient-implementation/
|
|||
>>> st.query(0, 2)
|
||||
[1, 2, 3]
|
||||
"""
|
||||
from typing import Callable, List, TypeVar
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Callable, TypeVar
|
||||
|
||||
T = TypeVar("T")
|
||||
|
||||
|
||||
class SegmentTree:
|
||||
def __init__(self, arr: List[T], fnc: Callable[[T, T], T]) -> None:
|
||||
def __init__(self, arr: list[T], fnc: Callable[[T, T], T]) -> None:
|
||||
"""
|
||||
Segment Tree constructor, it works just with commutative combiner.
|
||||
:param arr: list of elements for the segment tree
|
||||
|
|
|
@ -1,7 +1,8 @@
|
|||
# flake8: noqa
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from random import random
|
||||
from typing import Tuple
|
||||
|
||||
|
||||
class Node:
|
||||
|
@ -33,7 +34,7 @@ class Node:
|
|||
return value + left + right
|
||||
|
||||
|
||||
def split(root: Node, value: int) -> Tuple[Node, Node]:
|
||||
def split(root: Node, value: int) -> tuple[Node, Node]:
|
||||
"""
|
||||
We split current tree into 2 trees with value:
|
||||
|
||||
|
|
|
@ -3,8 +3,10 @@ Based on "Skip Lists: A Probabilistic Alternative to Balanced Trees" by William
|
|||
https://epaperpress.com/sortsearch/download/skiplist.pdf
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from random import random
|
||||
from typing import Generic, List, Optional, Tuple, TypeVar
|
||||
from typing import Generic, Optional, TypeVar
|
||||
|
||||
KT = TypeVar("KT")
|
||||
VT = TypeVar("VT")
|
||||
|
@ -14,7 +16,7 @@ class Node(Generic[KT, VT]):
|
|||
def __init__(self, key: KT, value: VT):
|
||||
self.key = key
|
||||
self.value = value
|
||||
self.forward: List[Node[KT, VT]] = []
|
||||
self.forward: list[Node[KT, VT]] = []
|
||||
|
||||
def __repr__(self) -> str:
|
||||
"""
|
||||
|
@ -122,7 +124,7 @@ class SkipList(Generic[KT, VT]):
|
|||
|
||||
return level
|
||||
|
||||
def _locate_node(self, key) -> Tuple[Optional[Node[KT, VT]], List[Node[KT, VT]]]:
|
||||
def _locate_node(self, key) -> tuple[Optional[Node[KT, VT]], list[Node[KT, VT]]]:
|
||||
"""
|
||||
:param key: Searched key,
|
||||
:return: Tuple with searched node (or None if given key is not present)
|
||||
|
|
|
@ -1,8 +1,9 @@
|
|||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
from typing import List, Tuple
|
||||
|
||||
|
||||
def default_matrix_multiplication(a: List, b: List) -> List:
|
||||
def default_matrix_multiplication(a: list, b: list) -> list:
|
||||
"""
|
||||
Multiplication only for 2x2 matrices
|
||||
"""
|
||||
|
@ -15,23 +16,21 @@ def default_matrix_multiplication(a: List, b: List) -> List:
|
|||
return new_matrix
|
||||
|
||||
|
||||
def matrix_addition(matrix_a: List, matrix_b: List):
|
||||
def matrix_addition(matrix_a: list, matrix_b: list):
|
||||
return [
|
||||
[matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row]))]
|
||||
for row in range(len(matrix_a))
|
||||
]
|
||||
|
||||
|
||||
def matrix_subtraction(matrix_a: List, matrix_b: List):
|
||||
def matrix_subtraction(matrix_a: list, matrix_b: list):
|
||||
return [
|
||||
[matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row]))]
|
||||
for row in range(len(matrix_a))
|
||||
]
|
||||
|
||||
|
||||
def split_matrix(
|
||||
a: List,
|
||||
) -> Tuple[List, List, List, List]:
|
||||
def split_matrix(a: list) -> tuple[list, list, list, list]:
|
||||
"""
|
||||
Given an even length matrix, returns the top_left, top_right, bot_left, bot_right
|
||||
quadrant.
|
||||
|
@ -64,16 +63,16 @@ def split_matrix(
|
|||
return top_left, top_right, bot_left, bot_right
|
||||
|
||||
|
||||
def matrix_dimensions(matrix: List) -> Tuple[int, int]:
|
||||
def matrix_dimensions(matrix: list) -> tuple[int, int]:
|
||||
return len(matrix), len(matrix[0])
|
||||
|
||||
|
||||
def print_matrix(matrix: List) -> None:
|
||||
def print_matrix(matrix: list) -> None:
|
||||
for i in range(len(matrix)):
|
||||
print(matrix[i])
|
||||
|
||||
|
||||
def actual_strassen(matrix_a: List, matrix_b: List) -> List:
|
||||
def actual_strassen(matrix_a: list, matrix_b: list) -> list:
|
||||
"""
|
||||
Recursive function to calculate the product of two matrices, using the Strassen
|
||||
Algorithm. It only supports even length matrices.
|
||||
|
@ -106,7 +105,7 @@ def actual_strassen(matrix_a: List, matrix_b: List) -> List:
|
|||
return new_matrix
|
||||
|
||||
|
||||
def strassen(matrix1: List, matrix2: List) -> List:
|
||||
def strassen(matrix1: list, matrix2: list) -> list:
|
||||
"""
|
||||
>>> strassen([[2,1,3],[3,4,6],[1,4,2],[7,6,7]], [[4,2,3,4],[2,1,1,1],[8,6,4,2]])
|
||||
[[34, 23, 19, 15], [68, 46, 37, 28], [28, 18, 15, 12], [96, 62, 55, 48]]
|
||||
|
|
|
@ -4,8 +4,9 @@
|
|||
This program calculates the nth Fibonacci number in O(log(n)).
|
||||
It's possible to calculate F(1_000_000) in less than a second.
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
import sys
|
||||
from typing import Tuple
|
||||
|
||||
|
||||
def fibonacci(n: int) -> int:
|
||||
|
@ -20,7 +21,7 @@ def fibonacci(n: int) -> int:
|
|||
|
||||
|
||||
# returns (F(n), F(n-1))
|
||||
def _fib(n: int) -> Tuple[int, int]:
|
||||
def _fib(n: int) -> tuple[int, int]:
|
||||
if n == 0: # (F(0), F(1))
|
||||
return (0, 1)
|
||||
|
||||
|
|
|
@ -2,12 +2,12 @@
|
|||
# https://www.guru99.com/fractional-knapsack-problem-greedy.html
|
||||
# https://medium.com/walkinthecode/greedy-algorithm-fractional-knapsack-problem-9aba1daecc93
|
||||
|
||||
from typing import List, Tuple
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def fractional_knapsack(
|
||||
value: List[int], weight: List[int], capacity: int
|
||||
) -> Tuple[int, List[int]]:
|
||||
value: list[int], weight: list[int], capacity: int
|
||||
) -> tuple[int, list[int]]:
|
||||
"""
|
||||
>>> value = [1, 3, 5, 7, 9]
|
||||
>>> weight = [0.9, 0.7, 0.5, 0.3, 0.1]
|
||||
|
|
|
@ -5,10 +5,10 @@ You are given a bitmask m and you want to efficiently iterate through all of
|
|||
its submasks. The mask s is submask of m if only bits that were included in
|
||||
bitmask are set
|
||||
"""
|
||||
from typing import List
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def list_of_submasks(mask: int) -> List[int]:
|
||||
def list_of_submasks(mask: int) -> list[int]:
|
||||
|
||||
"""
|
||||
Args:
|
||||
|
|
|
@ -10,10 +10,10 @@ return it.
|
|||
Example: [10, 22, 9, 33, 21, 50, 41, 60, 80] as input will return
|
||||
[10, 22, 33, 41, 60, 80] as output
|
||||
"""
|
||||
from typing import List
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def longest_subsequence(array: List[int]) -> List[int]: # This function is recursive
|
||||
def longest_subsequence(array: list[int]) -> list[int]: # This function is recursive
|
||||
"""
|
||||
Some examples
|
||||
>>> longest_subsequence([10, 22, 9, 33, 21, 50, 41, 60, 80])
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
# comments: This programme outputs the Longest Strictly Increasing Subsequence in
|
||||
# O(NLogN) Where N is the Number of elements in the list
|
||||
#############################
|
||||
from typing import List
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def CeilIndex(v, l, r, key): # noqa: E741
|
||||
|
@ -17,7 +17,7 @@ def CeilIndex(v, l, r, key): # noqa: E741
|
|||
return r
|
||||
|
||||
|
||||
def LongestIncreasingSubsequenceLength(v: List[int]) -> int:
|
||||
def LongestIncreasingSubsequenceLength(v: list[int]) -> int:
|
||||
"""
|
||||
>>> LongestIncreasingSubsequenceLength([2, 5, 3, 7, 11, 8, 10, 13, 6])
|
||||
6
|
||||
|
|
|
@ -1,9 +1,9 @@
|
|||
# Video Explanation: https://www.youtube.com/watch?v=6w60Zi1NtL8&feature=emb_logo
|
||||
|
||||
from typing import List
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def maximum_non_adjacent_sum(nums: List[int]) -> int:
|
||||
def maximum_non_adjacent_sum(nums: list[int]) -> int:
|
||||
"""
|
||||
Find the maximum non-adjacent sum of the integers in the nums input list
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
"""
|
||||
author : Mayank Kumar Jha (mk9440)
|
||||
"""
|
||||
from typing import List
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def find_max_sub_array(A, low, high):
|
||||
|
@ -38,7 +38,7 @@ def find_max_cross_sum(A, low, mid, high):
|
|||
return max_left, max_right, (left_sum + right_sum)
|
||||
|
||||
|
||||
def max_sub_array(nums: List[int]) -> int:
|
||||
def max_sub_array(nums: list[int]) -> int:
|
||||
"""
|
||||
Finds the contiguous subarray which has the largest sum and return its sum.
|
||||
|
||||
|
|
|
@ -1,9 +1,9 @@
|
|||
# Youtube Explanation: https://www.youtube.com/watch?v=lBRtnuxg-gU
|
||||
|
||||
from typing import List
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def minimum_cost_path(matrix: List[List[int]]) -> int:
|
||||
def minimum_cost_path(matrix: list[list[int]]) -> int:
|
||||
"""
|
||||
Find the minimum cost traced by all possible paths from top left to bottom right in
|
||||
a given matrix
|
||||
|
|
|
@ -5,8 +5,9 @@ https://en.wikipedia.org/wiki/Genetic_algorithm
|
|||
Author: D4rkia
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import random
|
||||
from typing import List, Tuple
|
||||
|
||||
# Maximum size of the population. bigger could be faster but is more memory expensive
|
||||
N_POPULATION = 200
|
||||
|
@ -20,7 +21,7 @@ MUTATION_PROBABILITY = 0.4
|
|||
random.seed(random.randint(0, 1000))
|
||||
|
||||
|
||||
def basic(target: str, genes: List[str], debug: bool = True) -> Tuple[int, int, str]:
|
||||
def basic(target: str, genes: list[str], debug: bool = True) -> tuple[int, int, str]:
|
||||
"""
|
||||
Verify that the target contains no genes besides the ones inside genes variable.
|
||||
|
||||
|
@ -69,7 +70,7 @@ def basic(target: str, genes: List[str], debug: bool = True) -> Tuple[int, int,
|
|||
total_population += len(population)
|
||||
|
||||
# Random population created now it's time to evaluate
|
||||
def evaluate(item: str, main_target: str = target) -> Tuple[str, float]:
|
||||
def evaluate(item: str, main_target: str = target) -> tuple[str, float]:
|
||||
"""
|
||||
Evaluate how similar the item is with the target by just
|
||||
counting each char in the right position
|
||||
|
@ -84,7 +85,7 @@ def basic(target: str, genes: List[str], debug: bool = True) -> Tuple[int, int,
|
|||
# Adding a bit of concurrency can make everything faster,
|
||||
#
|
||||
# import concurrent.futures
|
||||
# population_score: List[Tuple[str, float]] = []
|
||||
# population_score: list[tuple[str, float]] = []
|
||||
# with concurrent.futures.ThreadPoolExecutor(
|
||||
# max_workers=NUM_WORKERS) as executor:
|
||||
# futures = {executor.submit(evaluate, item) for item in population}
|
||||
|
@ -121,7 +122,7 @@ def basic(target: str, genes: List[str], debug: bool = True) -> Tuple[int, int,
|
|||
]
|
||||
|
||||
# Select, Crossover and Mutate a new population
|
||||
def select(parent_1: Tuple[str, float]) -> List[str]:
|
||||
def select(parent_1: tuple[str, float]) -> list[str]:
|
||||
"""Select the second parent and generate new population"""
|
||||
pop = []
|
||||
# Generate more child proportionally to the fitness score
|
||||
|
@ -135,7 +136,7 @@ def basic(target: str, genes: List[str], debug: bool = True) -> Tuple[int, int,
|
|||
pop.append(mutate(child_2))
|
||||
return pop
|
||||
|
||||
def crossover(parent_1: str, parent_2: str) -> Tuple[str, str]:
|
||||
def crossover(parent_1: str, parent_2: str) -> tuple[str, str]:
|
||||
"""Slice and combine two string in a random point"""
|
||||
random_slice = random.randint(0, len(parent_1) - 1)
|
||||
child_1 = parent_1[:random_slice] + parent_2[random_slice:]
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
# https://en.wikipedia.org/wiki/B%C3%A9zier_curve
|
||||
# https://www.tutorialspoint.com/computer_graphics/computer_graphics_curves.htm
|
||||
from typing import List, Tuple
|
||||
from __future__ import annotations
|
||||
|
||||
from scipy.special import comb
|
||||
|
||||
|
@ -12,7 +12,7 @@ class BezierCurve:
|
|||
This implementation works only for 2d coordinates in the xy plane.
|
||||
"""
|
||||
|
||||
def __init__(self, list_of_points: List[Tuple[float, float]]):
|
||||
def __init__(self, list_of_points: list[tuple[float, float]]):
|
||||
"""
|
||||
list_of_points: Control points in the xy plane on which to interpolate. These
|
||||
points control the behavior (shape) of the Bezier curve.
|
||||
|
@ -22,7 +22,7 @@ class BezierCurve:
|
|||
# Degree = 1 will produce a straight line.
|
||||
self.degree = len(list_of_points) - 1
|
||||
|
||||
def basis_function(self, t: float) -> List[float]:
|
||||
def basis_function(self, t: float) -> list[float]:
|
||||
"""
|
||||
The basis function determines the weight of each control point at time t.
|
||||
t: time value between 0 and 1 inclusive at which to evaluate the basis of
|
||||
|
@ -36,7 +36,7 @@ class BezierCurve:
|
|||
[0.0, 1.0]
|
||||
"""
|
||||
assert 0 <= t <= 1, "Time t must be between 0 and 1."
|
||||
output_values: List[float] = []
|
||||
output_values: list[float] = []
|
||||
for i in range(len(self.list_of_points)):
|
||||
# basis function for each i
|
||||
output_values.append(
|
||||
|
@ -46,7 +46,7 @@ class BezierCurve:
|
|||
assert round(sum(output_values), 5) == 1
|
||||
return output_values
|
||||
|
||||
def bezier_curve_function(self, t: float) -> Tuple[float, float]:
|
||||
def bezier_curve_function(self, t: float) -> tuple[float, float]:
|
||||
"""
|
||||
The function to produce the values of the Bezier curve at time t.
|
||||
t: the value of time t at which to evaluate the Bezier function
|
||||
|
@ -80,8 +80,8 @@ class BezierCurve:
|
|||
"""
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
to_plot_x: List[float] = [] # x coordinates of points to plot
|
||||
to_plot_y: List[float] = [] # y coordinates of points to plot
|
||||
to_plot_x: list[float] = [] # x coordinates of points to plot
|
||||
to_plot_y: list[float] = [] # y coordinates of points to plot
|
||||
|
||||
t = 0.0
|
||||
while t <= 1:
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
from typing import Dict, List
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def printDist(dist, V):
|
||||
|
@ -7,7 +7,7 @@ def printDist(dist, V):
|
|||
print("\t".join(f"{i}\t{d}" for i, d in enumerate(distances)))
|
||||
|
||||
|
||||
def BellmanFord(graph: List[Dict[str, int]], V: int, E: int, src: int) -> int:
|
||||
def BellmanFord(graph: list[dict[str, int]], V: int, E: int, src: int) -> int:
|
||||
"""
|
||||
Returns shortest paths from a vertex src to all
|
||||
other vertices.
|
||||
|
|
|
@ -2,9 +2,10 @@
|
|||
https://en.wikipedia.org/wiki/Bidirectional_search
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import time
|
||||
from math import sqrt
|
||||
from typing import List, Tuple
|
||||
|
||||
# 1 for manhattan, 0 for euclidean
|
||||
HEURISTIC = 0
|
||||
|
@ -89,7 +90,7 @@ class AStar:
|
|||
|
||||
self.reached = False
|
||||
|
||||
def search(self) -> List[Tuple[int]]:
|
||||
def search(self) -> list[tuple[int]]:
|
||||
while self.open_nodes:
|
||||
# Open Nodes are sorted using __lt__
|
||||
self.open_nodes.sort()
|
||||
|
@ -120,7 +121,7 @@ class AStar:
|
|||
if not (self.reached):
|
||||
return [(self.start.pos)]
|
||||
|
||||
def get_successors(self, parent: Node) -> List[Node]:
|
||||
def get_successors(self, parent: Node) -> list[Node]:
|
||||
"""
|
||||
Returns a list of successors (both in the grid and free spaces)
|
||||
"""
|
||||
|
@ -146,7 +147,7 @@ class AStar:
|
|||
)
|
||||
return successors
|
||||
|
||||
def retrace_path(self, node: Node) -> List[Tuple[int]]:
|
||||
def retrace_path(self, node: Node) -> list[tuple[int]]:
|
||||
"""
|
||||
Retrace the path from parents to parents until start node
|
||||
"""
|
||||
|
@ -177,7 +178,7 @@ class BidirectionalAStar:
|
|||
self.bwd_astar = AStar(goal, start)
|
||||
self.reached = False
|
||||
|
||||
def search(self) -> List[Tuple[int]]:
|
||||
def search(self) -> list[tuple[int]]:
|
||||
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
|
||||
self.fwd_astar.open_nodes.sort()
|
||||
self.bwd_astar.open_nodes.sort()
|
||||
|
@ -224,7 +225,7 @@ class BidirectionalAStar:
|
|||
|
||||
def retrace_bidirectional_path(
|
||||
self, fwd_node: Node, bwd_node: Node
|
||||
) -> List[Tuple[int]]:
|
||||
) -> list[tuple[int]]:
|
||||
fwd_path = self.fwd_astar.retrace_path(fwd_node)
|
||||
bwd_path = self.bwd_astar.retrace_path(bwd_node)
|
||||
bwd_path.pop()
|
||||
|
|
|
@ -2,8 +2,9 @@
|
|||
https://en.wikipedia.org/wiki/Bidirectional_search
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import time
|
||||
from typing import List, Tuple
|
||||
|
||||
grid = [
|
||||
[0, 0, 0, 0, 0, 0, 0],
|
||||
|
@ -51,7 +52,7 @@ class BreadthFirstSearch:
|
|||
self.node_queue = [self.start]
|
||||
self.reached = False
|
||||
|
||||
def search(self) -> List[Tuple[int]]:
|
||||
def search(self) -> list[tuple[int]]:
|
||||
while self.node_queue:
|
||||
current_node = self.node_queue.pop(0)
|
||||
|
||||
|
@ -67,7 +68,7 @@ class BreadthFirstSearch:
|
|||
if not (self.reached):
|
||||
return [(self.start.pos)]
|
||||
|
||||
def get_successors(self, parent: Node) -> List[Node]:
|
||||
def get_successors(self, parent: Node) -> list[Node]:
|
||||
"""
|
||||
Returns a list of successors (both in the grid and free spaces)
|
||||
"""
|
||||
|
@ -86,7 +87,7 @@ class BreadthFirstSearch:
|
|||
)
|
||||
return successors
|
||||
|
||||
def retrace_path(self, node: Node) -> List[Tuple[int]]:
|
||||
def retrace_path(self, node: Node) -> list[tuple[int]]:
|
||||
"""
|
||||
Retrace the path from parents to parents until start node
|
||||
"""
|
||||
|
@ -118,7 +119,7 @@ class BidirectionalBreadthFirstSearch:
|
|||
self.bwd_bfs = BreadthFirstSearch(goal, start)
|
||||
self.reached = False
|
||||
|
||||
def search(self) -> List[Tuple[int]]:
|
||||
def search(self) -> list[tuple[int]]:
|
||||
while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue:
|
||||
current_fwd_node = self.fwd_bfs.node_queue.pop(0)
|
||||
current_bwd_node = self.bwd_bfs.node_queue.pop(0)
|
||||
|
@ -146,7 +147,7 @@ class BidirectionalBreadthFirstSearch:
|
|||
|
||||
def retrace_bidirectional_path(
|
||||
self, fwd_node: Node, bwd_node: Node
|
||||
) -> List[Tuple[int]]:
|
||||
) -> list[tuple[int]]:
|
||||
fwd_path = self.fwd_bfs.retrace_path(fwd_node)
|
||||
bwd_path = self.bwd_bfs.retrace_path(bwd_node)
|
||||
bwd_path.pop()
|
||||
|
|
|
@ -12,7 +12,7 @@ while Q is non-empty:
|
|||
mark w as explored
|
||||
add w to Q (at the end)
|
||||
"""
|
||||
from typing import Dict, Set
|
||||
from __future__ import annotations
|
||||
|
||||
G = {
|
||||
"A": ["B", "C"],
|
||||
|
@ -24,7 +24,7 @@ G = {
|
|||
}
|
||||
|
||||
|
||||
def breadth_first_search(graph: Dict, start: str) -> Set[str]:
|
||||
def breadth_first_search(graph: dict, start: str) -> set[str]:
|
||||
"""
|
||||
>>> ''.join(sorted(breadth_first_search(G, 'A')))
|
||||
'ABCDEF'
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
"""Breath First Search (BFS) can be used when finding the shortest path
|
||||
from a given source node to a target node in an unweighted graph.
|
||||
"""
|
||||
from typing import Dict
|
||||
from __future__ import annotations
|
||||
|
||||
graph = {
|
||||
"A": ["B", "C", "E"],
|
||||
|
@ -15,7 +15,7 @@ graph = {
|
|||
|
||||
|
||||
class Graph:
|
||||
def __init__(self, graph: Dict[str, str], source_vertex: str) -> None:
|
||||
def __init__(self, graph: dict[str, str], source_vertex: str) -> None:
|
||||
"""Graph is implemented as dictionary of adjacency lists. Also,
|
||||
Source vertex have to be defined upon initialization.
|
||||
"""
|
||||
|
|
|
@ -1,9 +1,9 @@
|
|||
"""Non recursive implementation of a DFS algorithm."""
|
||||
|
||||
from typing import Dict, Set
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def depth_first_search(graph: Dict, start: str) -> Set[int]:
|
||||
def depth_first_search(graph: dict, start: str) -> set[int]:
|
||||
"""Depth First Search on Graph
|
||||
:param graph: directed graph in dictionary format
|
||||
:param vertex: starting vertex as a string
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
from typing import List
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def stable_matching(donor_pref: List[int], recipient_pref: List[int]) -> List[int]:
|
||||
def stable_matching(donor_pref: list[int], recipient_pref: list[int]) -> list[int]:
|
||||
"""
|
||||
Finds the stable match in any bipartite graph, i.e a pairing where no 2 objects
|
||||
prefer each other over their partner. The function accepts the preferences of
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
https://en.wikipedia.org/wiki/Best-first_search#Greedy_BFS
|
||||
"""
|
||||
|
||||
from typing import List, Tuple
|
||||
from __future__ import annotations
|
||||
|
||||
grid = [
|
||||
[0, 0, 0, 0, 0, 0, 0],
|
||||
|
@ -81,7 +81,7 @@ class GreedyBestFirst:
|
|||
|
||||
self.reached = False
|
||||
|
||||
def search(self) -> List[Tuple[int]]:
|
||||
def search(self) -> list[tuple[int]]:
|
||||
"""
|
||||
Search for the path,
|
||||
if a path is not found, only the starting position is returned
|
||||
|
@ -116,7 +116,7 @@ class GreedyBestFirst:
|
|||
if not (self.reached):
|
||||
return [self.start.pos]
|
||||
|
||||
def get_successors(self, parent: Node) -> List[Node]:
|
||||
def get_successors(self, parent: Node) -> list[Node]:
|
||||
"""
|
||||
Returns a list of successors (both in the grid and free spaces)
|
||||
"""
|
||||
|
@ -143,7 +143,7 @@ class GreedyBestFirst:
|
|||
)
|
||||
return successors
|
||||
|
||||
def retrace_path(self, node: Node) -> List[Tuple[int]]:
|
||||
def retrace_path(self, node: Node) -> list[tuple[int]]:
|
||||
"""
|
||||
Retrace the path from parents to parents until start node
|
||||
"""
|
||||
|
|
|
@ -2,8 +2,9 @@
|
|||
An implementation of Karger's Algorithm for partitioning a graph.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import random
|
||||
from typing import Dict, List, Set, Tuple
|
||||
|
||||
# Adjacency list representation of this graph:
|
||||
# https://en.wikipedia.org/wiki/File:Single_run_of_Karger%E2%80%99s_Mincut_algorithm.svg
|
||||
|
@ -21,7 +22,7 @@ TEST_GRAPH = {
|
|||
}
|
||||
|
||||
|
||||
def partition_graph(graph: Dict[str, List[str]]) -> Set[Tuple[str, str]]:
|
||||
def partition_graph(graph: dict[str, list[str]]) -> set[tuple[str, str]]:
|
||||
"""
|
||||
Partitions a graph using Karger's Algorithm. Implemented from
|
||||
pseudocode found here:
|
||||
|
@ -60,9 +61,7 @@ def partition_graph(graph: Dict[str, List[str]]) -> Set[Tuple[str, str]]:
|
|||
for neighbor in uv_neighbors:
|
||||
graph_copy[neighbor].append(uv)
|
||||
|
||||
contracted_nodes[uv] = {
|
||||
node for node in contracted_nodes[u].union(contracted_nodes[v])
|
||||
}
|
||||
contracted_nodes[uv] = set(contracted_nodes[u].union(contracted_nodes[v]))
|
||||
|
||||
# Remove nodes u and v.
|
||||
del graph_copy[u]
|
||||
|
|
|
@ -100,7 +100,7 @@ def prim_heap(graph: list, root: Vertex) -> Iterator[tuple]:
|
|||
u.pi = None
|
||||
root.key = 0
|
||||
|
||||
h = [v for v in graph]
|
||||
h = list(graph)
|
||||
hq.heapify(h)
|
||||
|
||||
while h:
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
from typing import List
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def points_to_polynomial(coordinates: List[List[int]]) -> str:
|
||||
def points_to_polynomial(coordinates: list[list[int]]) -> str:
|
||||
"""
|
||||
coordinates is a two dimensional matrix: [[x, y], [x, y], ...]
|
||||
number of points you want to use
|
||||
|
@ -60,7 +60,7 @@ def points_to_polynomial(coordinates: List[List[int]]) -> str:
|
|||
while count_of_line < x:
|
||||
count_in_line = 0
|
||||
a = coordinates[count_of_line][0]
|
||||
count_line: List[int] = []
|
||||
count_line: list[int] = []
|
||||
while count_in_line < x:
|
||||
count_line.append(a ** (x - (count_in_line + 1)))
|
||||
count_in_line += 1
|
||||
|
@ -69,7 +69,7 @@ def points_to_polynomial(coordinates: List[List[int]]) -> str:
|
|||
|
||||
count_of_line = 0
|
||||
# put the y values into a vector
|
||||
vector: List[int] = []
|
||||
vector: list[int] = []
|
||||
while count_of_line < x:
|
||||
vector.append(coordinates[count_of_line][1])
|
||||
count_of_line += 1
|
||||
|
@ -94,7 +94,7 @@ def points_to_polynomial(coordinates: List[List[int]]) -> str:
|
|||
|
||||
count = 0
|
||||
# make solutions
|
||||
solution: List[str] = []
|
||||
solution: list[str] = []
|
||||
while count < x:
|
||||
solution.append(vector[count] / matrix[count][count])
|
||||
count += 1
|
||||
|
@ -103,7 +103,7 @@ def points_to_polynomial(coordinates: List[List[int]]) -> str:
|
|||
solved = "f(x)="
|
||||
|
||||
while count < x:
|
||||
remove_e: List[str] = str(solution[count]).split("E")
|
||||
remove_e: list[str] = str(solution[count]).split("E")
|
||||
if len(remove_e) > 1:
|
||||
solution[count] = remove_e[0] + "*10^" + remove_e[1]
|
||||
solved += "x^" + str(x - (count + 1)) + "*" + str(solution[count])
|
||||
|
|
|
@ -11,11 +11,12 @@ projection(45) = [[0.27596319193541496, 0.446998331800279],
|
|||
reflection(45) = [[0.05064397763545947, 0.893996663600558],
|
||||
[0.893996663600558, 0.7018070490682369]]
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
from math import cos, sin
|
||||
from typing import List
|
||||
|
||||
|
||||
def scaling(scaling_factor: float) -> List[List[float]]:
|
||||
def scaling(scaling_factor: float) -> list[list[float]]:
|
||||
"""
|
||||
>>> scaling(5)
|
||||
[[5.0, 0.0], [0.0, 5.0]]
|
||||
|
@ -24,7 +25,7 @@ def scaling(scaling_factor: float) -> List[List[float]]:
|
|||
return [[scaling_factor * int(x == y) for x in range(2)] for y in range(2)]
|
||||
|
||||
|
||||
def rotation(angle: float) -> List[List[float]]:
|
||||
def rotation(angle: float) -> list[list[float]]:
|
||||
"""
|
||||
>>> rotation(45) # doctest: +NORMALIZE_WHITESPACE
|
||||
[[0.5253219888177297, -0.8509035245341184],
|
||||
|
@ -34,7 +35,7 @@ def rotation(angle: float) -> List[List[float]]:
|
|||
return [[c, -s], [s, c]]
|
||||
|
||||
|
||||
def projection(angle: float) -> List[List[float]]:
|
||||
def projection(angle: float) -> list[list[float]]:
|
||||
"""
|
||||
>>> projection(45) # doctest: +NORMALIZE_WHITESPACE
|
||||
[[0.27596319193541496, 0.446998331800279],
|
||||
|
@ -45,7 +46,7 @@ def projection(angle: float) -> List[List[float]]:
|
|||
return [[c * c, cs], [cs, s * s]]
|
||||
|
||||
|
||||
def reflection(angle: float) -> List[List[float]]:
|
||||
def reflection(angle: float) -> list[list[float]]:
|
||||
"""
|
||||
>>> reflection(45) # doctest: +NORMALIZE_WHITESPACE
|
||||
[[0.05064397763545947, 0.893996663600558],
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
from typing import List, Tuple
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def n31(a: int) -> Tuple[List[int], int]:
|
||||
def n31(a: int) -> tuple[list[int], int]:
|
||||
"""
|
||||
Returns the Collatz sequence and its length of any positive integer.
|
||||
>>> n31(4)
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
from typing import List
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def abs_max(x: List[int]) -> int:
|
||||
def abs_max(x: list[int]) -> int:
|
||||
"""
|
||||
>>> abs_max([0,5,1,11])
|
||||
11
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
from typing import List
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def allocation_num(number_of_bytes: int, partitions: int) -> List[str]:
|
||||
def allocation_num(number_of_bytes: int, partitions: int) -> list[str]:
|
||||
"""
|
||||
Divide a number of bytes into x partitions.
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
from typing import List
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def collatz_sequence(n: int) -> List[int]:
|
||||
def collatz_sequence(n: int) -> list[int]:
|
||||
"""
|
||||
Collatz conjecture: start with any positive integer n. The next term is
|
||||
obtained as follows:
|
||||
|
|
|
@ -4,11 +4,11 @@
|
|||
Implementation of entropy of information
|
||||
https://en.wikipedia.org/wiki/Entropy_(information_theory)
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
from collections import Counter
|
||||
from string import ascii_lowercase
|
||||
from typing import Tuple
|
||||
|
||||
|
||||
def calculate_prob(text: str) -> None:
|
||||
|
@ -89,7 +89,7 @@ def calculate_prob(text: str) -> None:
|
|||
print("{0:.1f}".format(round(((-1 * my_sec_sum) - (-1 * my_fir_sum)))))
|
||||
|
||||
|
||||
def analyze_text(text: str) -> Tuple[dict, dict]:
|
||||
def analyze_text(text: str) -> tuple[dict, dict]:
|
||||
"""
|
||||
Convert text input into two dicts of counts.
|
||||
The first dictionary stores the frequency of single character strings.
|
||||
|
|
|
@ -3,10 +3,10 @@ References: wikipedia:square free number
|
|||
python/black : True
|
||||
flake8 : True
|
||||
"""
|
||||
from typing import List
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def is_square_free(factors: List[int]) -> bool:
|
||||
def is_square_free(factors: list[int]) -> bool:
|
||||
"""
|
||||
# doctest: +NORMALIZE_WHITESPACE
|
||||
This functions takes a list of prime factors as input.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
import math as m
|
||||
import math
|
||||
from typing import Callable, Union
|
||||
|
||||
|
||||
|
@ -29,7 +29,7 @@ def line_length(
|
|||
'10.000000'
|
||||
|
||||
>>> def f(x):
|
||||
... return m.sin(5 * x) + m.cos(10 * x) + x * x/10
|
||||
... return math.sin(5 * x) + math.cos(10 * x) + x * x/10
|
||||
>>> f"{line_length(f, 0.0, 10.0, 10000):.6f}"
|
||||
'69.534930'
|
||||
"""
|
||||
|
@ -43,7 +43,7 @@ def line_length(
|
|||
# Approximates curve as a sequence of linear lines and sums their length
|
||||
x2 = (x_end - x_start) / steps + x1
|
||||
fx2 = fnc(x2)
|
||||
length += m.hypot(x2 - x1, fx2 - fx1)
|
||||
length += math.hypot(x2 - x1, fx2 - fx1)
|
||||
|
||||
# Increment step
|
||||
x1 = x2
|
||||
|
@ -55,7 +55,7 @@ def line_length(
|
|||
if __name__ == "__main__":
|
||||
|
||||
def f(x):
|
||||
return m.sin(10 * x)
|
||||
return math.sin(10 * x)
|
||||
|
||||
print("f(x) = sin(10 * x)")
|
||||
print("The length of the curve from x = -10 to x = 10 is:")
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
from __future__ import annotations
|
||||
|
||||
import random
|
||||
from typing import List
|
||||
|
||||
|
||||
class Dice:
|
||||
|
@ -16,7 +17,7 @@ class Dice:
|
|||
return "Fair Dice"
|
||||
|
||||
|
||||
def throw_dice(num_throws: int, num_dice: int = 2) -> List[float]:
|
||||
def throw_dice(num_throws: int, num_dice: int = 2) -> list[float]:
|
||||
"""
|
||||
Return probability list of all possible sums when throwing dice.
|
||||
|
||||
|
@ -35,7 +36,7 @@ def throw_dice(num_throws: int, num_dice: int = 2) -> List[float]:
|
|||
dices = [Dice() for i in range(num_dice)]
|
||||
count_of_sum = [0] * (len(dices) * Dice.NUM_SIDES + 1)
|
||||
for i in range(num_throws):
|
||||
count_of_sum[sum([dice.roll() for dice in dices])] += 1
|
||||
count_of_sum[sum(dice.roll() for dice in dices)] += 1
|
||||
probability = [round((count * 100) / num_throws, 2) for count in count_of_sum]
|
||||
return probability[num_dice:] # remove probability of sums that never appear
|
||||
|
||||
|
|
|
@ -1,10 +1,10 @@
|
|||
"""
|
||||
python/black : True
|
||||
"""
|
||||
from typing import List
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def prime_factors(n: int) -> List[int]:
|
||||
def prime_factors(n: int) -> list[int]:
|
||||
"""
|
||||
Returns prime factors of n as a list.
|
||||
|
||||
|
|
|
@ -1,8 +1,9 @@
|
|||
from __future__ import annotations
|
||||
|
||||
from cmath import sqrt
|
||||
from typing import Tuple
|
||||
|
||||
|
||||
def quadratic_roots(a: int, b: int, c: int) -> Tuple[complex, complex]:
|
||||
def quadratic_roots(a: int, b: int, c: int) -> tuple[complex, complex]:
|
||||
"""
|
||||
Given the numerical coefficients a, b and c,
|
||||
calculates the roots for any quadratic equation of the form ax^2 + bx + c
|
||||
|
|
|
@ -9,12 +9,12 @@ After through ReLU, the element of the vector always 0 or real number.
|
|||
Script inspired from its corresponding Wikipedia article
|
||||
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
|
||||
"""
|
||||
from typing import List
|
||||
from __future__ import annotations
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def relu(vector: List[float]):
|
||||
def relu(vector: list[float]):
|
||||
"""
|
||||
Implements the relu function
|
||||
|
||||
|
|
|
@ -1,8 +1,9 @@
|
|||
from __future__ import annotations
|
||||
|
||||
from decimal import Decimal
|
||||
from typing import List
|
||||
|
||||
|
||||
def inverse_of_matrix(matrix: List[List[float]]) -> List[List[float]]:
|
||||
def inverse_of_matrix(matrix: list[list[float]]) -> list[list[float]]:
|
||||
"""
|
||||
A matrix multiplied with its inverse gives the identity matrix.
|
||||
This function finds the inverse of a 2x2 matrix.
|
||||
|
|
|
@ -2,10 +2,10 @@
|
|||
Functions for 2D matrix operations
|
||||
"""
|
||||
|
||||
from typing import List, Tuple
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def add(*matrix_s: List[list]) -> List[list]:
|
||||
def add(*matrix_s: list[list]) -> list[list]:
|
||||
"""
|
||||
>>> add([[1,2],[3,4]],[[2,3],[4,5]])
|
||||
[[3, 5], [7, 9]]
|
||||
|
@ -20,7 +20,7 @@ def add(*matrix_s: List[list]) -> List[list]:
|
|||
return [[sum(t) for t in zip(*m)] for m in zip(*matrix_s)]
|
||||
|
||||
|
||||
def subtract(matrix_a: List[list], matrix_b: List[list]) -> List[list]:
|
||||
def subtract(matrix_a: list[list], matrix_b: list[list]) -> list[list]:
|
||||
"""
|
||||
>>> subtract([[1,2],[3,4]],[[2,3],[4,5]])
|
||||
[[-1, -1], [-1, -1]]
|
||||
|
@ -35,7 +35,7 @@ def subtract(matrix_a: List[list], matrix_b: List[list]) -> List[list]:
|
|||
return [[i - j for i, j in zip(*m)] for m in zip(matrix_a, matrix_b)]
|
||||
|
||||
|
||||
def scalar_multiply(matrix: List[list], n: int) -> List[list]:
|
||||
def scalar_multiply(matrix: list[list], n: int) -> list[list]:
|
||||
"""
|
||||
>>> scalar_multiply([[1,2],[3,4]],5)
|
||||
[[5, 10], [15, 20]]
|
||||
|
@ -45,7 +45,7 @@ def scalar_multiply(matrix: List[list], n: int) -> List[list]:
|
|||
return [[x * n for x in row] for row in matrix]
|
||||
|
||||
|
||||
def multiply(matrix_a: List[list], matrix_b: List[list]) -> List[list]:
|
||||
def multiply(matrix_a: list[list], matrix_b: list[list]) -> list[list]:
|
||||
"""
|
||||
>>> multiply([[1,2],[3,4]],[[5,5],[7,5]])
|
||||
[[19, 15], [43, 35]]
|
||||
|
@ -67,7 +67,7 @@ def multiply(matrix_a: List[list], matrix_b: List[list]) -> List[list]:
|
|||
]
|
||||
|
||||
|
||||
def identity(n: int) -> List[list]:
|
||||
def identity(n: int) -> list[list]:
|
||||
"""
|
||||
:param n: dimension for nxn matrix
|
||||
:type n: int
|
||||
|
@ -79,7 +79,7 @@ def identity(n: int) -> List[list]:
|
|||
return [[int(row == column) for column in range(n)] for row in range(n)]
|
||||
|
||||
|
||||
def transpose(matrix: List[list], return_map: bool = True) -> List[list]:
|
||||
def transpose(matrix: list[list], return_map: bool = True) -> list[list]:
|
||||
"""
|
||||
>>> transpose([[1,2],[3,4]]) # doctest: +ELLIPSIS
|
||||
<map object at ...
|
||||
|
@ -93,7 +93,7 @@ def transpose(matrix: List[list], return_map: bool = True) -> List[list]:
|
|||
return list(map(list, zip(*matrix)))
|
||||
|
||||
|
||||
def minor(matrix: List[list], row: int, column: int) -> List[list]:
|
||||
def minor(matrix: list[list], row: int, column: int) -> list[list]:
|
||||
"""
|
||||
>>> minor([[1, 2], [3, 4]], 1, 1)
|
||||
[[1]]
|
||||
|
@ -102,7 +102,7 @@ def minor(matrix: List[list], row: int, column: int) -> List[list]:
|
|||
return [row[:column] + row[column + 1 :] for row in minor]
|
||||
|
||||
|
||||
def determinant(matrix: List[list]) -> int:
|
||||
def determinant(matrix: list[list]) -> int:
|
||||
"""
|
||||
>>> determinant([[1, 2], [3, 4]])
|
||||
-2
|
||||
|
@ -118,7 +118,7 @@ def determinant(matrix: List[list]) -> int:
|
|||
)
|
||||
|
||||
|
||||
def inverse(matrix: List[list]) -> List[list]:
|
||||
def inverse(matrix: list[list]) -> list[list]:
|
||||
"""
|
||||
>>> inverse([[1, 2], [3, 4]])
|
||||
[[-2.0, 1.0], [1.5, -0.5]]
|
||||
|
@ -142,17 +142,17 @@ def inverse(matrix: List[list]) -> List[list]:
|
|||
return scalar_multiply(adjugate, 1 / det)
|
||||
|
||||
|
||||
def _check_not_integer(matrix: List[list]) -> bool:
|
||||
def _check_not_integer(matrix: list[list]) -> bool:
|
||||
if not isinstance(matrix, int) and not isinstance(matrix[0], int):
|
||||
return True
|
||||
raise TypeError("Expected a matrix, got int/list instead")
|
||||
|
||||
|
||||
def _shape(matrix: List[list]) -> list:
|
||||
def _shape(matrix: list[list]) -> list:
|
||||
return len(matrix), len(matrix[0])
|
||||
|
||||
|
||||
def _verify_matrix_sizes(matrix_a: List[list], matrix_b: List[list]) -> Tuple[list]:
|
||||
def _verify_matrix_sizes(matrix_a: list[list], matrix_b: list[list]) -> tuple[list]:
|
||||
shape = _shape(matrix_a) + _shape(matrix_b)
|
||||
if shape[0] != shape[3] or shape[1] != shape[2]:
|
||||
raise ValueError(
|
||||
|
|
|
@ -1,21 +1,23 @@
|
|||
from typing import List, Union
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Union
|
||||
|
||||
|
||||
def search_in_a_sorted_matrix(
|
||||
mat: List[list], m: int, n: int, key: Union[int, float]
|
||||
mat: list[list], m: int, n: int, key: Union[int, float]
|
||||
) -> None:
|
||||
"""
|
||||
>>> search_in_a_sorted_matrix(\
|
||||
[[2, 5, 7], [4, 8, 13], [9, 11, 15], [12, 17, 20]], 3, 3, 5)
|
||||
>>> search_in_a_sorted_matrix(
|
||||
... [[2, 5, 7], [4, 8, 13], [9, 11, 15], [12, 17, 20]], 3, 3, 5)
|
||||
Key 5 found at row- 1 column- 2
|
||||
>>> search_in_a_sorted_matrix(\
|
||||
[[2, 5, 7], [4, 8, 13], [9, 11, 15], [12, 17, 20]], 3, 3, 21)
|
||||
>>> search_in_a_sorted_matrix(
|
||||
... [[2, 5, 7], [4, 8, 13], [9, 11, 15], [12, 17, 20]], 3, 3, 21)
|
||||
Key 21 not found
|
||||
>>> search_in_a_sorted_matrix(\
|
||||
[[2.1, 5, 7], [4, 8, 13], [9, 11, 15], [12, 17, 20]], 3, 3, 2.1)
|
||||
>>> search_in_a_sorted_matrix(
|
||||
... [[2.1, 5, 7], [4, 8, 13], [9, 11, 15], [12, 17, 20]], 3, 3, 2.1)
|
||||
Key 2.1 found at row- 1 column- 1
|
||||
>>> search_in_a_sorted_matrix(\
|
||||
[[2.1, 5, 7], [4, 8, 13], [9, 11, 15], [12, 17, 20]], 3, 3, 2.2)
|
||||
>>> search_in_a_sorted_matrix(
|
||||
... [[2.1, 5, 7], [4, 8, 13], [9, 11, 15], [12, 17, 20]], 3, 3, 2.2)
|
||||
Key 2.2 not found
|
||||
"""
|
||||
i, j = m - 1, 0
|
||||
|
|
|
@ -15,8 +15,9 @@ before deciding whether allocation should be allowed to continue.
|
|||
(https://rosettacode.org/wiki/Banker%27s_algorithm)
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import time
|
||||
from typing import Dict, List
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
@ -40,9 +41,9 @@ test_maximum_claim_table = [
|
|||
class BankersAlgorithm:
|
||||
def __init__(
|
||||
self,
|
||||
claim_vector: List[int],
|
||||
allocated_resources_table: List[List[int]],
|
||||
maximum_claim_table: List[List[int]],
|
||||
claim_vector: list[int],
|
||||
allocated_resources_table: list[list[int]],
|
||||
maximum_claim_table: list[list[int]],
|
||||
) -> None:
|
||||
"""
|
||||
:param claim_vector: A nxn/nxm list depicting the amount of each resources
|
||||
|
@ -56,7 +57,7 @@ class BankersAlgorithm:
|
|||
self.__allocated_resources_table = allocated_resources_table
|
||||
self.__maximum_claim_table = maximum_claim_table
|
||||
|
||||
def __processes_resource_summation(self) -> List[int]:
|
||||
def __processes_resource_summation(self) -> list[int]:
|
||||
"""
|
||||
Check for allocated resources in line with each resource in the claim vector
|
||||
"""
|
||||
|
@ -65,7 +66,7 @@ class BankersAlgorithm:
|
|||
for i in range(len(self.__allocated_resources_table[0]))
|
||||
]
|
||||
|
||||
def __available_resources(self) -> List[int]:
|
||||
def __available_resources(self) -> list[int]:
|
||||
"""
|
||||
Check for available resources in line with each resource in the claim vector
|
||||
"""
|
||||
|
@ -73,7 +74,7 @@ class BankersAlgorithm:
|
|||
self.__processes_resource_summation()
|
||||
)
|
||||
|
||||
def __need(self) -> List[List[int]]:
|
||||
def __need(self) -> list[list[int]]:
|
||||
"""
|
||||
Implement safety checker that calculates the needs by ensuring that
|
||||
max_claim[i][j] - alloc_table[i][j] <= avail[j]
|
||||
|
@ -83,7 +84,7 @@ class BankersAlgorithm:
|
|||
for i, allocated_resource in enumerate(self.__allocated_resources_table)
|
||||
]
|
||||
|
||||
def __need_index_manager(self) -> Dict[int, List[int]]:
|
||||
def __need_index_manager(self) -> dict[int, list[int]]:
|
||||
"""
|
||||
This function builds an index control dictionary to track original ids/indices
|
||||
of processes when altered during execution of method "main"
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
from __future__ import annotations
|
||||
|
||||
from collections import Counter
|
||||
from random import random
|
||||
from typing import Dict, List, Tuple
|
||||
|
||||
|
||||
class MarkovChainGraphUndirectedUnweighted:
|
||||
|
@ -23,7 +24,7 @@ class MarkovChainGraphUndirectedUnweighted:
|
|||
self.add_node(node2)
|
||||
self.connections[node1][node2] = probability
|
||||
|
||||
def get_nodes(self) -> List[str]:
|
||||
def get_nodes(self) -> list[str]:
|
||||
return list(self.connections)
|
||||
|
||||
def transition(self, node: str) -> str:
|
||||
|
@ -37,8 +38,8 @@ class MarkovChainGraphUndirectedUnweighted:
|
|||
|
||||
|
||||
def get_transitions(
|
||||
start: str, transitions: List[Tuple[str, str, float]], steps: int
|
||||
) -> Dict[str, int]:
|
||||
start: str, transitions: list[tuple[str, str, float]], steps: int
|
||||
) -> dict[str, int]:
|
||||
"""
|
||||
Running Markov Chain algorithm and calculating the number of times each node is
|
||||
visited
|
||||
|
|
|
@ -3,13 +3,14 @@ Given an array of integers and another integer target,
|
|||
we are required to find a triplet from the array such that it's sum is equal to
|
||||
the target.
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
from itertools import permutations
|
||||
from random import randint
|
||||
from timeit import repeat
|
||||
from typing import List, Tuple
|
||||
|
||||
|
||||
def make_dataset() -> Tuple[List[int], int]:
|
||||
def make_dataset() -> tuple[list[int], int]:
|
||||
arr = [randint(-1000, 1000) for i in range(10)]
|
||||
r = randint(-5000, 5000)
|
||||
return (arr, r)
|
||||
|
@ -18,7 +19,7 @@ def make_dataset() -> Tuple[List[int], int]:
|
|||
dataset = make_dataset()
|
||||
|
||||
|
||||
def triplet_sum1(arr: List[int], target: int) -> Tuple[int, int, int]:
|
||||
def triplet_sum1(arr: list[int], target: int) -> tuple[int, int, int]:
|
||||
"""
|
||||
Returns a triplet in the array with sum equal to target,
|
||||
else (0, 0, 0).
|
||||
|
@ -37,7 +38,7 @@ def triplet_sum1(arr: List[int], target: int) -> Tuple[int, int, int]:
|
|||
return (0, 0, 0)
|
||||
|
||||
|
||||
def triplet_sum2(arr: List[int], target: int) -> Tuple[int, int, int]:
|
||||
def triplet_sum2(arr: list[int], target: int) -> tuple[int, int, int]:
|
||||
"""
|
||||
Returns a triplet in the array with sum equal to target,
|
||||
else (0, 0, 0).
|
||||
|
@ -64,7 +65,7 @@ def triplet_sum2(arr: List[int], target: int) -> Tuple[int, int, int]:
|
|||
return (0, 0, 0)
|
||||
|
||||
|
||||
def solution_times() -> Tuple[float, float]:
|
||||
def solution_times() -> tuple[float, float]:
|
||||
setup_code = """
|
||||
from __main__ import dataset, triplet_sum1, triplet_sum2
|
||||
"""
|
||||
|
|
|
@ -10,7 +10,7 @@ below 1 million using the Seive of Eratosthenes. Then, out of all these primes,
|
|||
we will rule out the numbers which contain an even digit. After this we will
|
||||
generate each circular combination of the number and check if all are prime.
|
||||
"""
|
||||
from typing import List
|
||||
from __future__ import annotations
|
||||
|
||||
seive = [True] * 1000001
|
||||
i = 2
|
||||
|
@ -47,7 +47,7 @@ def contains_an_even_digit(n: int) -> bool:
|
|||
return any(digit in "02468" for digit in str(n))
|
||||
|
||||
|
||||
def find_circular_primes(limit: int = 1000000) -> List[int]:
|
||||
def find_circular_primes(limit: int = 1000000) -> list[int]:
|
||||
"""
|
||||
Return circular primes below limit.
|
||||
>>> len(find_circular_primes(100))
|
||||
|
|
|
@ -9,8 +9,7 @@ and right to left.
|
|||
NOTE: 2, 3, 5, and 7 are not considered to be truncatable primes.
|
||||
"""
|
||||
|
||||
|
||||
from typing import List
|
||||
from __future__ import annotations
|
||||
|
||||
seive = [True] * 1000001
|
||||
seive[1] = False
|
||||
|
@ -36,7 +35,7 @@ def is_prime(n: int) -> bool:
|
|||
return seive[n]
|
||||
|
||||
|
||||
def list_truncated_nums(n: int) -> List[int]:
|
||||
def list_truncated_nums(n: int) -> list[int]:
|
||||
"""
|
||||
Returns a list of all left and right truncated numbers of n
|
||||
>>> list_truncated_nums(927628)
|
||||
|
@ -71,7 +70,7 @@ def validate(n: int) -> bool:
|
|||
return True
|
||||
|
||||
|
||||
def compute_truncated_primes(count: int = 11) -> List[int]:
|
||||
def compute_truncated_primes(count: int = 11) -> list[int]:
|
||||
"""
|
||||
Returns the list of truncated primes
|
||||
>>> compute_truncated_primes(11)
|
||||
|
|
|
@ -6,11 +6,12 @@ If p is the perimeter of a right angle triangle with integral length sides,
|
|||
For which value of p ≤ 1000, is the number of solutions maximised?
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from collections import Counter
|
||||
from typing import Dict
|
||||
|
||||
|
||||
def pythagorean_triple(max_perimeter: int) -> Dict:
|
||||
def pythagorean_triple(max_perimeter: int) -> dict:
|
||||
"""
|
||||
Returns a dictionary with keys as the perimeter of a right angled triangle
|
||||
and value as the number of corresponding triplets.
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
from __future__ import annotations
|
||||
|
||||
from itertools import permutations
|
||||
from math import sqrt
|
||||
from typing import List
|
||||
|
||||
"""
|
||||
We shall say that an n-digit number is pandigital if it makes use of all the digits
|
||||
|
@ -34,7 +35,7 @@ def is_prime(n: int) -> bool:
|
|||
return True
|
||||
|
||||
|
||||
def compute_pandigital_primes(n: int) -> List[int]:
|
||||
def compute_pandigital_primes(n: int) -> list[int]:
|
||||
"""
|
||||
Returns a list of all n-digit pandigital primes.
|
||||
>>> compute_pandigital_primes(2)
|
||||
|
|
|
@ -15,7 +15,7 @@ What is the smallest odd composite that cannot be written as the sum of a
|
|||
prime and twice a square?
|
||||
"""
|
||||
|
||||
from typing import List
|
||||
from __future__ import annotations
|
||||
|
||||
seive = [True] * 100001
|
||||
i = 2
|
||||
|
@ -43,7 +43,7 @@ def is_prime(n: int) -> bool:
|
|||
odd_composites = [num for num in range(3, len(seive), 2) if not is_prime(num)]
|
||||
|
||||
|
||||
def compute_nums(n: int) -> List[int]:
|
||||
def compute_nums(n: int) -> list[int]:
|
||||
"""
|
||||
Returns a list of first n odd composite numbers which do
|
||||
not follow the conjecture.
|
||||
|
|
|
@ -40,7 +40,7 @@ Similar problem on codewars:
|
|||
https://www.codewars.com/kata/ranking-poker-hands
|
||||
https://www.codewars.com/kata/sortable-poker-hands
|
||||
"""
|
||||
from typing import List, Set, Tuple
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
class PokerHand(object):
|
||||
|
@ -310,7 +310,7 @@ class PokerHand(object):
|
|||
self._second_pair = second
|
||||
return kind
|
||||
|
||||
def _internal_state(self) -> Tuple[List[int], Set[str]]:
|
||||
def _internal_state(self) -> tuple[list[int], set[str]]:
|
||||
# Internal representation of hand as a list of card values and
|
||||
# a set of card suit
|
||||
trans: dict = {"T": "10", "J": "11", "Q": "12", "K": "13", "A": "14"}
|
||||
|
|
|
@ -2,10 +2,10 @@
|
|||
# In this Algorithm we just care about the order that the processes arrived
|
||||
# without carring about their duration time
|
||||
# https://en.wikipedia.org/wiki/Scheduling_(computing)#First_come,_first_served
|
||||
from typing import List
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def calculate_waiting_times(duration_times: List[int]) -> List[int]:
|
||||
def calculate_waiting_times(duration_times: list[int]) -> list[int]:
|
||||
"""
|
||||
This function calculates the waiting time of some processes that have a
|
||||
specified duration time.
|
||||
|
@ -24,8 +24,8 @@ def calculate_waiting_times(duration_times: List[int]) -> List[int]:
|
|||
|
||||
|
||||
def calculate_turnaround_times(
|
||||
duration_times: List[int], waiting_times: List[int]
|
||||
) -> List[int]:
|
||||
duration_times: list[int], waiting_times: list[int]
|
||||
) -> list[int]:
|
||||
"""
|
||||
This function calculates the turnaround time of some processes.
|
||||
Return: The time difference between the completion time and the
|
||||
|
@ -44,7 +44,7 @@ def calculate_turnaround_times(
|
|||
]
|
||||
|
||||
|
||||
def calculate_average_turnaround_time(turnaround_times: List[int]) -> float:
|
||||
def calculate_average_turnaround_time(turnaround_times: list[int]) -> float:
|
||||
"""
|
||||
This function calculates the average of the turnaround times
|
||||
Return: The average of the turnaround times.
|
||||
|
@ -58,7 +58,7 @@ def calculate_average_turnaround_time(turnaround_times: List[int]) -> float:
|
|||
return sum(turnaround_times) / len(turnaround_times)
|
||||
|
||||
|
||||
def calculate_average_waiting_time(waiting_times: List[int]) -> float:
|
||||
def calculate_average_waiting_time(waiting_times: list[int]) -> float:
|
||||
"""
|
||||
This function calculates the average of the waiting times
|
||||
Return: The average of the waiting times.
|
||||
|
|
|
@ -3,11 +3,12 @@ Round Robin is a scheduling algorithm.
|
|||
In Round Robin each process is assigned a fixed time slot in a cyclic way.
|
||||
https://en.wikipedia.org/wiki/Round-robin_scheduling
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
from statistics import mean
|
||||
from typing import List
|
||||
|
||||
|
||||
def calculate_waiting_times(burst_times: List[int]) -> List[int]:
|
||||
def calculate_waiting_times(burst_times: list[int]) -> list[int]:
|
||||
"""
|
||||
Calculate the waiting times of a list of processes that have a specified duration.
|
||||
|
||||
|
@ -40,8 +41,8 @@ def calculate_waiting_times(burst_times: List[int]) -> List[int]:
|
|||
|
||||
|
||||
def calculate_turn_around_times(
|
||||
burst_times: List[int], waiting_times: List[int]
|
||||
) -> List[int]:
|
||||
burst_times: list[int], waiting_times: list[int]
|
||||
) -> list[int]:
|
||||
"""
|
||||
>>> calculate_turn_around_times([1, 2, 3, 4], [0, 1, 3])
|
||||
[1, 3, 6]
|
||||
|
|
|
@ -3,14 +3,14 @@ Shortest job remaining first
|
|||
Please note arrival time and burst
|
||||
Please use spaces to separate times entered.
|
||||
"""
|
||||
from typing import List
|
||||
from __future__ import annotations
|
||||
|
||||
import pandas as pd
|
||||
|
||||
|
||||
def calculate_waitingtime(
|
||||
arrival_time: List[int], burst_time: List[int], no_of_processes: int
|
||||
) -> List[int]:
|
||||
arrival_time: list[int], burst_time: list[int], no_of_processes: int
|
||||
) -> list[int]:
|
||||
"""
|
||||
Calculate the waiting time of each processes
|
||||
Return: list of waiting times.
|
||||
|
@ -72,8 +72,8 @@ def calculate_waitingtime(
|
|||
|
||||
|
||||
def calculate_turnaroundtime(
|
||||
burst_time: List[int], no_of_processes: int, waiting_time: List[int]
|
||||
) -> List[int]:
|
||||
burst_time: list[int], no_of_processes: int, waiting_time: list[int]
|
||||
) -> list[int]:
|
||||
"""
|
||||
Calculate the turn around time of each Processes
|
||||
Return: list of turn around times.
|
||||
|
@ -91,7 +91,7 @@ def calculate_turnaroundtime(
|
|||
|
||||
|
||||
def calculate_average_times(
|
||||
waiting_time: List[int], turn_around_time: List[int], no_of_processes: int
|
||||
waiting_time: list[int], turn_around_time: list[int], no_of_processes: int
|
||||
):
|
||||
"""
|
||||
This function calculates the average of the waiting & turnaround times
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
from typing import List
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def double_linear_search(array: List[int], search_item: int) -> int:
|
||||
def double_linear_search(array: list[int], search_item: int) -> int:
|
||||
"""
|
||||
Iterate through the array from both sides to find the index of search_item.
|
||||
|
||||
|
|
|
@ -7,10 +7,10 @@ python3 -m doctest -v simple_binary_search.py
|
|||
For manual testing run:
|
||||
python3 simple_binary_search.py
|
||||
"""
|
||||
from typing import List
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def binary_search(a_list: List[int], item: int) -> bool:
|
||||
def binary_search(a_list: list[int], item: int) -> bool:
|
||||
"""
|
||||
>>> test_list = [0, 1, 2, 8, 13, 17, 19, 32, 42]
|
||||
>>> print(binary_search(test_list, 3))
|
||||
|
|
|
@ -9,10 +9,10 @@ For manual testing run:
|
|||
python3 iterative_merge_sort.py
|
||||
"""
|
||||
|
||||
from typing import List
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def merge(input_list: List, low: int, mid: int, high: int) -> List:
|
||||
def merge(input_list: list, low: int, mid: int, high: int) -> list:
|
||||
"""
|
||||
sorting left-half and right-half individually
|
||||
then merging them into result
|
||||
|
@ -26,7 +26,7 @@ def merge(input_list: List, low: int, mid: int, high: int) -> List:
|
|||
|
||||
|
||||
# iteration over the unsorted list
|
||||
def iter_merge_sort(input_list: List) -> List:
|
||||
def iter_merge_sort(input_list: list) -> list:
|
||||
"""
|
||||
Return a sorted copy of the input list
|
||||
|
||||
|
|
|
@ -11,10 +11,10 @@ For manual testing run:
|
|||
python3 merge_insertion_sort.py
|
||||
"""
|
||||
|
||||
from typing import List
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def merge_insertion_sort(collection: List[int]) -> List[int]:
|
||||
def merge_insertion_sort(collection: list[int]) -> list[int]:
|
||||
"""Pure implementation of merge-insertion sort algorithm in Python
|
||||
|
||||
:param collection: some mutable ordered collection with heterogeneous
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
from typing import List
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def radix_sort(list_of_ints: List[int]) -> List[int]:
|
||||
def radix_sort(list_of_ints: list[int]) -> list[int]:
|
||||
"""
|
||||
radix_sort(range(15)) == sorted(range(15))
|
||||
True
|
||||
|
|
|
@ -2,10 +2,10 @@
|
|||
A recursive implementation of the insertion sort algorithm
|
||||
"""
|
||||
|
||||
from typing import List
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def rec_insertion_sort(collection: List, n: int):
|
||||
def rec_insertion_sort(collection: list, n: int):
|
||||
"""
|
||||
Given a collection of numbers and its length, sorts the collections
|
||||
in ascending order
|
||||
|
@ -36,7 +36,7 @@ def rec_insertion_sort(collection: List, n: int):
|
|||
rec_insertion_sort(collection, n - 1)
|
||||
|
||||
|
||||
def insert_next(collection: List, index: int):
|
||||
def insert_next(collection: list, index: int):
|
||||
"""
|
||||
Inserts the '(index-1)th' element into place
|
||||
|
||||
|
|
|
@ -3,8 +3,9 @@
|
|||
"""
|
||||
This is pure Python implementation of tree traversal algorithms
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
import queue
|
||||
from typing import List
|
||||
|
||||
|
||||
class TreeNode:
|
||||
|
|
|
@ -1,7 +1,9 @@
|
|||
"""
|
||||
Scraping jobs given job title and location from indeed website
|
||||
"""
|
||||
from typing import Generator, Tuple
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Generator
|
||||
|
||||
import requests
|
||||
from bs4 import BeautifulSoup
|
||||
|
@ -9,7 +11,7 @@ from bs4 import BeautifulSoup
|
|||
url = "https://www.indeed.co.in/jobs?q=mobile+app+development&l="
|
||||
|
||||
|
||||
def fetch_jobs(location: str = "mumbai") -> Generator[Tuple[str, str], None, None]:
|
||||
def fetch_jobs(location: str = "mumbai") -> Generator[tuple[str, str], None, None]:
|
||||
soup = BeautifulSoup(requests.get(url + location).content, "html.parser")
|
||||
# This attribute finds out all the specifics listed in a job
|
||||
for job in soup.find_all("div", attrs={"data-tn-component": "organicJob"}):
|
||||
|
|
|
@ -1,11 +1,12 @@
|
|||
from __future__ import annotations
|
||||
|
||||
import csv
|
||||
from typing import Dict
|
||||
|
||||
import requests
|
||||
from bs4 import BeautifulSoup
|
||||
|
||||
|
||||
def get_imdb_top_250_movies(url: str = "") -> Dict[str, float]:
|
||||
def get_imdb_top_250_movies(url: str = "") -> dict[str, float]:
|
||||
url = url or "https://www.imdb.com/chart/top/?ref_=nv_mv_250"
|
||||
soup = BeautifulSoup(requests.get(url).text, "html.parser")
|
||||
titles = soup.find_all("td", attrs="titleColumn")
|
||||
|
|
Loading…
Reference in New Issue
Block a user