diff --git a/dynamic_programming/edit_distance.py b/dynamic_programming/edit_distance.py new file mode 100644 index 000000000..05682d2c6 --- /dev/null +++ b/dynamic_programming/edit_distance.py @@ -0,0 +1,74 @@ +""" +Author : Turfa Auliarachman +Date : October 12, 2016 + +This is a pure Python implementation of Dynamic Programming solution to the edit distance problem. + +The problem is : +Given two strings A and B. Find the minimum number of operations to string B such that A = B. The permitted operations are removal, insertion, and substitution. +""" + +class EditDistance: + """ + Use : + solver = EditDistance() + editDistanceResult = solver.solve(firstString, secondString) + """ + + def __init__(self): + self.__prepare__() + + def __prepare__(self, N = 0, M = 0): + self.dp = [[-1 for y in range(0,M)] for x in range(0,N)] + + def __solveDP(self, x, y): + if (x==-1): + return y+1 + elif (y==-1): + return x+1 + elif (self.dp[x][y]>-1): + return self.dp[x][y] + else: + if (self.A[x]==self.B[y]): + self.dp[x][y] = self.__solveDP(x-1,y-1) + else: + self.dp[x][y] = 1+min(self.__solveDP(x,y-1), self.__solveDP(x-1,y), self.__solveDP(x-1,y-1)) + + return self.dp[x][y] + + def solve(self, A, B): + if isinstance(A,bytes): + A = A.decode('ascii') + + if isinstance(B,bytes): + B = B.decode('ascii') + + self.A = str(A) + self.B = str(B) + + self.__prepare__(len(A), len(B)) + + return self.__solveDP(len(A)-1, len(B)-1) + +if __name__ == '__main__': + import sys + if sys.version_info.major < 3: + input_function = raw_input + else: + input_function = input + + solver = EditDistance() + + print("****************** Testing Edit Distance DP Algorithm ******************") + print() + + print("Enter the first string: ", end="") + S1 = input_function() + + print("Enter the second string: ", end="") + S2 = input_function() + + print() + print("The minimum Edit Distance is: %d" % (solver.solve(S1, S2))) + print() + print("*************** End of Testing Edit Distance DP Algorithm ***************")