mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
Add solution for Project Euler problem 173. (#3075)
* Added solution for Project Euler problemm problem 173. #2695 * Added docstring * Update formatting, doctest and annotations. Reference: #3256
This commit is contained in:
parent
a119005135
commit
9482f6a5a9
0
project_euler/problem_173/__init__.py
Normal file
0
project_euler/problem_173/__init__.py
Normal file
41
project_euler/problem_173/sol1.py
Normal file
41
project_euler/problem_173/sol1.py
Normal file
|
@ -0,0 +1,41 @@
|
|||
"""
|
||||
Project Euler Problem 173: https://projecteuler.net/problem=173
|
||||
|
||||
We shall define a square lamina to be a square outline with a square "hole" so that
|
||||
the shape possesses vertical and horizontal symmetry. For example, using exactly
|
||||
thirty-two square tiles we can form two different square laminae:
|
||||
|
||||
With one-hundred tiles, and not necessarily using all of the tiles at one time, it is
|
||||
possible to form forty-one different square laminae.
|
||||
|
||||
Using up to one million tiles how many different square laminae can be formed?
|
||||
"""
|
||||
|
||||
|
||||
from math import ceil, sqrt
|
||||
|
||||
|
||||
def solution(limit: int = 1000000) -> int:
|
||||
"""
|
||||
Return the number of different square laminae that can be formed using up to
|
||||
one million tiles.
|
||||
>>> solution(100)
|
||||
41
|
||||
"""
|
||||
answer = 0
|
||||
|
||||
for outer_width in range(3, (limit // 4) + 2):
|
||||
if outer_width ** 2 > limit:
|
||||
hole_width_lower_bound = max(ceil(sqrt(outer_width ** 2 - limit)), 1)
|
||||
else:
|
||||
hole_width_lower_bound = 1
|
||||
if (outer_width - hole_width_lower_bound) % 2:
|
||||
hole_width_lower_bound += 1
|
||||
|
||||
answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1
|
||||
|
||||
return answer
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(f"{solution() = }")
|
Loading…
Reference in New Issue
Block a user