Add solution for Project Euler problem 173. (#3075)

* Added solution for Project Euler problemm problem 173. #2695

* Added docstring

* Update formatting, doctest and annotations. Reference: #3256
This commit is contained in:
fpringle 2020-10-15 12:06:40 +02:00 committed by GitHub
parent a119005135
commit 9482f6a5a9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 41 additions and 0 deletions

View File

View File

@ -0,0 +1,41 @@
"""
Project Euler Problem 173: https://projecteuler.net/problem=173
We shall define a square lamina to be a square outline with a square "hole" so that
the shape possesses vertical and horizontal symmetry. For example, using exactly
thirty-two square tiles we can form two different square laminae:
With one-hundred tiles, and not necessarily using all of the tiles at one time, it is
possible to form forty-one different square laminae.
Using up to one million tiles how many different square laminae can be formed?
"""
from math import ceil, sqrt
def solution(limit: int = 1000000) -> int:
"""
Return the number of different square laminae that can be formed using up to
one million tiles.
>>> solution(100)
41
"""
answer = 0
for outer_width in range(3, (limit // 4) + 2):
if outer_width ** 2 > limit:
hole_width_lower_bound = max(ceil(sqrt(outer_width ** 2 - limit)), 1)
else:
hole_width_lower_bound = 1
if (outer_width - hole_width_lower_bound) % 2:
hole_width_lower_bound += 1
answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1
return answer
if __name__ == "__main__":
print(f"{solution() = }")