diff --git a/linear_algebra/gaussian_elimination.py b/linear_algebra/gaussian_elimination.py index 724773c0d..6f4075b71 100644 --- a/linear_algebra/gaussian_elimination.py +++ b/linear_algebra/gaussian_elimination.py @@ -1,6 +1,6 @@ """ -Gaussian elimination method for solving a system of linear equations. -Gaussian elimination - https://en.wikipedia.org/wiki/Gaussian_elimination +| Gaussian elimination method for solving a system of linear equations. +| Gaussian elimination - https://en.wikipedia.org/wiki/Gaussian_elimination """ import numpy as np @@ -13,12 +13,17 @@ def retroactive_resolution( ) -> NDArray[float64]: """ This function performs a retroactive linear system resolution - for triangular matrix + for triangular matrix Examples: - 2x1 + 2x2 - 1x3 = 5 2x1 + 2x2 = -1 - 0x1 - 2x2 - 1x3 = -7 0x1 - 2x2 = -1 - 0x1 + 0x2 + 5x3 = 15 + 1. + * 2x1 + 2x2 - 1x3 = 5 + * 0x1 - 2x2 - 1x3 = -7 + * 0x1 + 0x2 + 5x3 = 15 + 2. + * 2x1 + 2x2 = -1 + * 0x1 - 2x2 = -1 + >>> gaussian_elimination([[2, 2, -1], [0, -2, -1], [0, 0, 5]], [[5], [-7], [15]]) array([[2.], [2.], @@ -45,9 +50,14 @@ def gaussian_elimination( This function performs Gaussian elimination method Examples: - 1x1 - 4x2 - 2x3 = -2 1x1 + 2x2 = 5 - 5x1 + 2x2 - 2x3 = -3 5x1 + 2x2 = 5 - 1x1 - 1x2 + 0x3 = 4 + 1. + * 1x1 - 4x2 - 2x3 = -2 + * 5x1 + 2x2 - 2x3 = -3 + * 1x1 - 1x2 + 0x3 = 4 + 2. + * 1x1 + 2x2 = 5 + * 5x1 + 2x2 = 5 + >>> gaussian_elimination([[1, -4, -2], [5, 2, -2], [1, -1, 0]], [[-2], [-3], [4]]) array([[ 2.3 ], [-1.7 ], diff --git a/linear_algebra/lu_decomposition.py b/linear_algebra/lu_decomposition.py index 362067483..3d89b53a4 100644 --- a/linear_algebra/lu_decomposition.py +++ b/linear_algebra/lu_decomposition.py @@ -2,13 +2,14 @@ Lower-upper (LU) decomposition factors a matrix as a product of a lower triangular matrix and an upper triangular matrix. A square matrix has an LU decomposition under the following conditions: + - If the matrix is invertible, then it has an LU decomposition if and only - if all of its leading principal minors are non-zero (see - https://en.wikipedia.org/wiki/Minor_(linear_algebra) for an explanation of - leading principal minors of a matrix). + if all of its leading principal minors are non-zero (see + https://en.wikipedia.org/wiki/Minor_(linear_algebra) for an explanation of + leading principal minors of a matrix). - If the matrix is singular (i.e., not invertible) and it has a rank of k - (i.e., it has k linearly independent columns), then it has an LU - decomposition if its first k leading principal minors are non-zero. + (i.e., it has k linearly independent columns), then it has an LU + decomposition if its first k leading principal minors are non-zero. This algorithm will simply attempt to perform LU decomposition on any square matrix and raise an error if no such decomposition exists. @@ -25,6 +26,7 @@ def lower_upper_decomposition(table: np.ndarray) -> tuple[np.ndarray, np.ndarray """ Perform LU decomposition on a given matrix and raises an error if the matrix isn't square or if no such decomposition exists + >>> matrix = np.array([[2, -2, 1], [0, 1, 2], [5, 3, 1]]) >>> lower_mat, upper_mat = lower_upper_decomposition(matrix) >>> lower_mat @@ -45,7 +47,7 @@ def lower_upper_decomposition(table: np.ndarray) -> tuple[np.ndarray, np.ndarray array([[ 4. , 3. ], [ 0. , -1.5]]) - # Matrix is not square + >>> # Matrix is not square >>> matrix = np.array([[2, -2, 1], [0, 1, 2]]) >>> lower_mat, upper_mat = lower_upper_decomposition(matrix) Traceback (most recent call last): @@ -54,14 +56,14 @@ def lower_upper_decomposition(table: np.ndarray) -> tuple[np.ndarray, np.ndarray [[ 2 -2 1] [ 0 1 2]] - # Matrix is invertible, but its first leading principal minor is 0 + >>> # Matrix is invertible, but its first leading principal minor is 0 >>> matrix = np.array([[0, 1], [1, 0]]) >>> lower_mat, upper_mat = lower_upper_decomposition(matrix) Traceback (most recent call last): ... ArithmeticError: No LU decomposition exists - # Matrix is singular, but its first leading principal minor is 1 + >>> # Matrix is singular, but its first leading principal minor is 1 >>> matrix = np.array([[1, 0], [1, 0]]) >>> lower_mat, upper_mat = lower_upper_decomposition(matrix) >>> lower_mat @@ -71,7 +73,7 @@ def lower_upper_decomposition(table: np.ndarray) -> tuple[np.ndarray, np.ndarray array([[1., 0.], [0., 0.]]) - # Matrix is singular, but its first leading principal minor is 0 + >>> # Matrix is singular, but its first leading principal minor is 0 >>> matrix = np.array([[0, 1], [0, 1]]) >>> lower_mat, upper_mat = lower_upper_decomposition(matrix) Traceback (most recent call last): diff --git a/linear_algebra/src/gaussian_elimination_pivoting.py b/linear_algebra/src/gaussian_elimination_pivoting.py index efc1ddd64..540f57b0c 100644 --- a/linear_algebra/src/gaussian_elimination_pivoting.py +++ b/linear_algebra/src/gaussian_elimination_pivoting.py @@ -6,17 +6,18 @@ def solve_linear_system(matrix: np.ndarray) -> np.ndarray: Solve a linear system of equations using Gaussian elimination with partial pivoting Args: - - matrix: Coefficient matrix with the last column representing the constants. + - `matrix`: Coefficient matrix with the last column representing the constants. Returns: - - Solution vector. + - Solution vector. Raises: - - ValueError: If the matrix is not correct (i.e., singular). + - ``ValueError``: If the matrix is not correct (i.e., singular). https://courses.engr.illinois.edu/cs357/su2013/lect.htm Lecture 7 Example: + >>> A = np.array([[2, 1, -1], [-3, -1, 2], [-2, 1, 2]], dtype=float) >>> B = np.array([8, -11, -3], dtype=float) >>> solution = solve_linear_system(np.column_stack((A, B))) diff --git a/linear_algebra/src/rank_of_matrix.py b/linear_algebra/src/rank_of_matrix.py index 7ff3c1699..2c4fe2a8d 100644 --- a/linear_algebra/src/rank_of_matrix.py +++ b/linear_algebra/src/rank_of_matrix.py @@ -8,11 +8,15 @@ See: https://en.wikipedia.org/wiki/Rank_(linear_algebra) def rank_of_matrix(matrix: list[list[int | float]]) -> int: """ Finds the rank of a matrix. + Args: - matrix: The matrix as a list of lists. + `matrix`: The matrix as a list of lists. + Returns: The rank of the matrix. + Example: + >>> matrix1 = [[1, 2, 3], ... [4, 5, 6], ... [7, 8, 9]] diff --git a/linear_algebra/src/schur_complement.py b/linear_algebra/src/schur_complement.py index 7c79bb70a..74ac75e3f 100644 --- a/linear_algebra/src/schur_complement.py +++ b/linear_algebra/src/schur_complement.py @@ -12,13 +12,14 @@ def schur_complement( ) -> np.ndarray: """ Schur complement of a symmetric matrix X given as a 2x2 block matrix - consisting of matrices A, B and C. - Matrix A must be quadratic and non-singular. - In case A is singular, a pseudo-inverse may be provided using - the pseudo_inv argument. + consisting of matrices `A`, `B` and `C`. + Matrix `A` must be quadratic and non-singular. + In case `A` is singular, a pseudo-inverse may be provided using + the `pseudo_inv` argument. + + | Link to Wiki: https://en.wikipedia.org/wiki/Schur_complement + | See also Convex Optimization - Boyd and Vandenberghe, A.5.5 - Link to Wiki: https://en.wikipedia.org/wiki/Schur_complement - See also Convex Optimization - Boyd and Vandenberghe, A.5.5 >>> import numpy as np >>> a = np.array([[1, 2], [2, 1]]) >>> b = np.array([[0, 3], [3, 0]]) diff --git a/linear_algebra/src/transformations_2d.py b/linear_algebra/src/transformations_2d.py index b4185cd28..5dee59024 100644 --- a/linear_algebra/src/transformations_2d.py +++ b/linear_algebra/src/transformations_2d.py @@ -3,13 +3,15 @@ I have added the codes for reflection, projection, scaling and rotation 2D matrices. +.. code-block:: python + scaling(5) = [[5.0, 0.0], [0.0, 5.0]] - rotation(45) = [[0.5253219888177297, -0.8509035245341184], - [0.8509035245341184, 0.5253219888177297]] -projection(45) = [[0.27596319193541496, 0.446998331800279], - [0.446998331800279, 0.7240368080645851]] -reflection(45) = [[0.05064397763545947, 0.893996663600558], - [0.893996663600558, 0.7018070490682369]] + rotation(45) = [[0.5253219888177297, -0.8509035245341184], + [0.8509035245341184, 0.5253219888177297]] + projection(45) = [[0.27596319193541496, 0.446998331800279], + [0.446998331800279, 0.7240368080645851]] + reflection(45) = [[0.05064397763545947, 0.893996663600558], + [0.893996663600558, 0.7018070490682369]] """ from math import cos, sin