mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-28 07:21:07 +00:00
commit
9714aa31bc
15
Project Euler/Problem 16/sol1.py
Normal file
15
Project Euler/Problem 16/sol1.py
Normal file
|
@ -0,0 +1,15 @@
|
||||||
|
power = int(input("Enter the power of 2: "))
|
||||||
|
num = 2**power
|
||||||
|
|
||||||
|
string_num = str(num)
|
||||||
|
|
||||||
|
list_num = list(string_num)
|
||||||
|
|
||||||
|
sum_of_num = 0
|
||||||
|
|
||||||
|
print("2 ^",power,"=",num)
|
||||||
|
|
||||||
|
for i in list_num:
|
||||||
|
sum_of_num += int(i)
|
||||||
|
|
||||||
|
print("Sum of the digits are:",sum_of_num)
|
27
Project Euler/Problem 20/sol1.py
Normal file
27
Project Euler/Problem 20/sol1.py
Normal file
|
@ -0,0 +1,27 @@
|
||||||
|
# Finding the factorial.
|
||||||
|
def factorial(n):
|
||||||
|
fact = 1
|
||||||
|
for i in range(1,n+1):
|
||||||
|
fact *= i
|
||||||
|
return fact
|
||||||
|
|
||||||
|
# Spliting the digits and adding it.
|
||||||
|
def split_and_add(number):
|
||||||
|
sum_of_digits = 0
|
||||||
|
while(number>0):
|
||||||
|
last_digit = number % 10
|
||||||
|
sum_of_digits += last_digit
|
||||||
|
number = int(number/10) # Removing the last_digit from the given number.
|
||||||
|
return sum_of_digits
|
||||||
|
|
||||||
|
# Taking the user input.
|
||||||
|
number = int(input("Enter the Number: "))
|
||||||
|
|
||||||
|
# Assigning the factorial from the factorial function.
|
||||||
|
factorial = factorial(number)
|
||||||
|
|
||||||
|
# Spliting and adding the factorial into answer.
|
||||||
|
answer = split_and_add(factorial)
|
||||||
|
|
||||||
|
# Printing the answer.
|
||||||
|
print(answer)
|
|
@ -49,3 +49,10 @@ PROBLEMS:
|
||||||
Using the rule above and starting with 13, we generate the following sequence:
|
Using the rule above and starting with 13, we generate the following sequence:
|
||||||
13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1
|
13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1
|
||||||
Which starting number, under one million, produces the longest chain?
|
Which starting number, under one million, produces the longest chain?
|
||||||
|
|
||||||
|
16. 2^15 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26.
|
||||||
|
What is the sum of the digits of the number 2^1000?
|
||||||
|
20. n! means n × (n − 1) × ... × 3 × 2 × 1
|
||||||
|
For example, 10! = 10 × 9 × ... × 3 × 2 × 1 = 3628800,
|
||||||
|
and the sum of the digits in the number 10! is 3 + 6 + 2 + 8 + 8 + 0 + 0 = 27.
|
||||||
|
Find the sum of the digits in the number 100!
|
||||||
|
|
Loading…
Reference in New Issue
Block a user