mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
feat: add Project Euler problem 587 solution 1 (#6269)
Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
parent
90959212e5
commit
97f25d4b43
|
@ -898,6 +898,8 @@
|
|||
* [Sol1](project_euler/problem_493/sol1.py)
|
||||
* Problem 551
|
||||
* [Sol1](project_euler/problem_551/sol1.py)
|
||||
* Problem 587
|
||||
* [Sol1](project_euler/problem_587/sol1.py)
|
||||
* Problem 686
|
||||
* [Sol1](project_euler/problem_686/sol1.py)
|
||||
|
||||
|
|
0
project_euler/problem_587/__init__.py
Normal file
0
project_euler/problem_587/__init__.py
Normal file
94
project_euler/problem_587/sol1.py
Normal file
94
project_euler/problem_587/sol1.py
Normal file
|
@ -0,0 +1,94 @@
|
|||
"""
|
||||
Project Euler Problem 587: https://projecteuler.net/problem=587
|
||||
|
||||
A square is drawn around a circle as shown in the diagram below on the left.
|
||||
We shall call the blue shaded region the L-section.
|
||||
A line is drawn from the bottom left of the square to the top right
|
||||
as shown in the diagram on the right.
|
||||
We shall call the orange shaded region a concave triangle.
|
||||
|
||||
It should be clear that the concave triangle occupies exactly half of the L-section.
|
||||
|
||||
Two circles are placed next to each other horizontally,
|
||||
a rectangle is drawn around both circles, and
|
||||
a line is drawn from the bottom left to the top right as shown in the diagram below.
|
||||
|
||||
This time the concave triangle occupies approximately 36.46% of the L-section.
|
||||
|
||||
If n circles are placed next to each other horizontally,
|
||||
a rectangle is drawn around the n circles, and
|
||||
a line is drawn from the bottom left to the top right,
|
||||
then it can be shown that the least value of n
|
||||
for which the concave triangle occupies less than 10% of the L-section is n = 15.
|
||||
|
||||
What is the least value of n
|
||||
for which the concave triangle occupies less than 0.1% of the L-section?
|
||||
"""
|
||||
|
||||
from itertools import count
|
||||
from math import asin, pi, sqrt
|
||||
|
||||
|
||||
def circle_bottom_arc_integral(point: float) -> float:
|
||||
"""
|
||||
Returns integral of circle bottom arc y = 1 / 2 - sqrt(1 / 4 - (x - 1 / 2) ^ 2)
|
||||
|
||||
>>> circle_bottom_arc_integral(0)
|
||||
0.39269908169872414
|
||||
|
||||
>>> circle_bottom_arc_integral(1 / 2)
|
||||
0.44634954084936207
|
||||
|
||||
>>> circle_bottom_arc_integral(1)
|
||||
0.5
|
||||
"""
|
||||
|
||||
return (
|
||||
(1 - 2 * point) * sqrt(point - point**2) + 2 * point + asin(sqrt(1 - point))
|
||||
) / 4
|
||||
|
||||
|
||||
def concave_triangle_area(circles_number: int) -> float:
|
||||
"""
|
||||
Returns area of concave triangle
|
||||
|
||||
>>> concave_triangle_area(1)
|
||||
0.026825229575318944
|
||||
|
||||
>>> concave_triangle_area(2)
|
||||
0.01956236140083944
|
||||
"""
|
||||
|
||||
intersection_y = (circles_number + 1 - sqrt(2 * circles_number)) / (
|
||||
2 * (circles_number**2 + 1)
|
||||
)
|
||||
intersection_x = circles_number * intersection_y
|
||||
|
||||
triangle_area = intersection_x * intersection_y / 2
|
||||
concave_region_area = circle_bottom_arc_integral(
|
||||
1 / 2
|
||||
) - circle_bottom_arc_integral(intersection_x)
|
||||
|
||||
return triangle_area + concave_region_area
|
||||
|
||||
|
||||
def solution(fraction: float = 1 / 1000) -> int:
|
||||
"""
|
||||
Returns least value of n
|
||||
for which the concave triangle occupies less than fraction of the L-section
|
||||
|
||||
>>> solution(1 / 10)
|
||||
15
|
||||
"""
|
||||
|
||||
l_section_area = (1 - pi / 4) / 4
|
||||
|
||||
for n in count(1):
|
||||
if concave_triangle_area(n) / l_section_area < fraction:
|
||||
return n
|
||||
|
||||
return -1
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(f"{solution() = }")
|
Loading…
Reference in New Issue
Block a user