Consolidate gamma (#9769)

* refactor(gamma): Append _iterative to func name

* refactor(gamma): Consolidate implementations

* refactor(gamma): Redundant test function removal

* Update maths/gamma.py

---------

Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>
This commit is contained in:
fxdup 2023-10-06 14:46:58 -04:00 committed by GitHub
parent 795e97e87f
commit 995c5533c6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 79 additions and 89 deletions

View File

@ -1,35 +1,43 @@
"""
Gamma function is a very useful tool in math and physics.
It helps calculating complex integral in a convenient way.
for more info: https://en.wikipedia.org/wiki/Gamma_function
In mathematics, the gamma function is one commonly
used extension of the factorial function to complex numbers.
The gamma function is defined for all complex numbers except
the non-positive integers
Python's Standard Library math.gamma() function overflows around gamma(171.624).
"""
import math
from numpy import inf
from scipy.integrate import quad
def gamma(num: float) -> float:
def gamma_iterative(num: float) -> float:
"""
https://en.wikipedia.org/wiki/Gamma_function
In mathematics, the gamma function is one commonly
used extension of the factorial function to complex numbers.
The gamma function is defined for all complex numbers except the non-positive
integers
>>> gamma(-1)
Calculates the value of Gamma function of num
where num is either an integer (1, 2, 3..) or a half-integer (0.5, 1.5, 2.5 ...).
>>> gamma_iterative(-1)
Traceback (most recent call last):
...
ValueError: math domain error
>>> gamma(0)
>>> gamma_iterative(0)
Traceback (most recent call last):
...
ValueError: math domain error
>>> gamma(9)
>>> gamma_iterative(9)
40320.0
>>> from math import gamma as math_gamma
>>> all(.99999999 < gamma(i) / math_gamma(i) <= 1.000000001
>>> all(.99999999 < gamma_iterative(i) / math_gamma(i) <= 1.000000001
... for i in range(1, 50))
True
>>> gamma(-1)/math_gamma(-1) <= 1.000000001
>>> gamma_iterative(-1)/math_gamma(-1) <= 1.000000001
Traceback (most recent call last):
...
ValueError: math domain error
>>> gamma(3.3) - math_gamma(3.3) <= 0.00000001
>>> gamma_iterative(3.3) - math_gamma(3.3) <= 0.00000001
True
"""
if num <= 0:
@ -42,7 +50,66 @@ def integrand(x: float, z: float) -> float:
return math.pow(x, z - 1) * math.exp(-x)
def gamma_recursive(num: float) -> float:
"""
Calculates the value of Gamma function of num
where num is either an integer (1, 2, 3..) or a half-integer (0.5, 1.5, 2.5 ...).
Implemented using recursion
Examples:
>>> from math import isclose, gamma as math_gamma
>>> gamma_recursive(0.5)
1.7724538509055159
>>> gamma_recursive(1)
1.0
>>> gamma_recursive(2)
1.0
>>> gamma_recursive(3.5)
3.3233509704478426
>>> gamma_recursive(171.5)
9.483367566824795e+307
>>> all(isclose(gamma_recursive(num), math_gamma(num))
... for num in (0.5, 2, 3.5, 171.5))
True
>>> gamma_recursive(0)
Traceback (most recent call last):
...
ValueError: math domain error
>>> gamma_recursive(-1.1)
Traceback (most recent call last):
...
ValueError: math domain error
>>> gamma_recursive(-4)
Traceback (most recent call last):
...
ValueError: math domain error
>>> gamma_recursive(172)
Traceback (most recent call last):
...
OverflowError: math range error
>>> gamma_recursive(1.1)
Traceback (most recent call last):
...
NotImplementedError: num must be an integer or a half-integer
"""
if num <= 0:
raise ValueError("math domain error")
if num > 171.5:
raise OverflowError("math range error")
elif num - int(num) not in (0, 0.5):
raise NotImplementedError("num must be an integer or a half-integer")
elif num == 0.5:
return math.sqrt(math.pi)
else:
return 1.0 if num == 1 else (num - 1) * gamma_recursive(num - 1)
if __name__ == "__main__":
from doctest import testmod
testmod()
num = 1.0
while num:
num = float(input("Gamma of: "))
print(f"gamma_iterative({num}) = {gamma_iterative(num)}")
print(f"gamma_recursive({num}) = {gamma_recursive(num)}")
print("\nEnter 0 to exit...")

View File

@ -1,77 +0,0 @@
"""
Gamma function is a very useful tool in math and physics.
It helps calculating complex integral in a convenient way.
for more info: https://en.wikipedia.org/wiki/Gamma_function
Python's Standard Library math.gamma() function overflows around gamma(171.624).
"""
from math import pi, sqrt
def gamma(num: float) -> float:
"""
Calculates the value of Gamma function of num
where num is either an integer (1, 2, 3..) or a half-integer (0.5, 1.5, 2.5 ...).
Implemented using recursion
Examples:
>>> from math import isclose, gamma as math_gamma
>>> gamma(0.5)
1.7724538509055159
>>> gamma(2)
1.0
>>> gamma(3.5)
3.3233509704478426
>>> gamma(171.5)
9.483367566824795e+307
>>> all(isclose(gamma(num), math_gamma(num)) for num in (0.5, 2, 3.5, 171.5))
True
>>> gamma(0)
Traceback (most recent call last):
...
ValueError: math domain error
>>> gamma(-1.1)
Traceback (most recent call last):
...
ValueError: math domain error
>>> gamma(-4)
Traceback (most recent call last):
...
ValueError: math domain error
>>> gamma(172)
Traceback (most recent call last):
...
OverflowError: math range error
>>> gamma(1.1)
Traceback (most recent call last):
...
NotImplementedError: num must be an integer or a half-integer
"""
if num <= 0:
raise ValueError("math domain error")
if num > 171.5:
raise OverflowError("math range error")
elif num - int(num) not in (0, 0.5):
raise NotImplementedError("num must be an integer or a half-integer")
elif num == 0.5:
return sqrt(pi)
else:
return 1.0 if num == 1 else (num - 1) * gamma(num - 1)
def test_gamma() -> None:
"""
>>> test_gamma()
"""
assert gamma(0.5) == sqrt(pi)
assert gamma(1) == 1.0
assert gamma(2) == 1.0
if __name__ == "__main__":
from doctest import testmod
testmod()
num = 1.0
while num:
num = float(input("Gamma of: "))
print(f"gamma({num}) = {gamma(num)}")
print("\nEnter 0 to exit...")