mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 08:17:01 +00:00
Add first solution for Project Euler Problem 207 (#3522)
* add solution to Project Euler problem 206 * Add solution to Project Euler problem 205 * updating DIRECTORY.md * updating DIRECTORY.md * Revert "Add solution to Project Euler problem 205" This reverts commit64e3d36cab
. * Revert "add solution to Project Euler problem 206" This reverts commit53568cf4ef
. * add solution for project euler problem 207 * updating DIRECTORY.md * add type hint for output of helper function * Correct default parameter value in solution * use descriptive variable names and remove problem solution from doctest Fixes: #2695 Co-authored-by: nico <esistegal-aber@gmx.de> Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
parent
9971f981a1
commit
99adac0eb1
|
@ -720,6 +720,8 @@
|
|||
* [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_174/sol1.py)
|
||||
* Problem 191
|
||||
* [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_191/sol1.py)
|
||||
* Problem 207
|
||||
* [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_207/sol1.py)
|
||||
* Problem 234
|
||||
* [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_234/sol1.py)
|
||||
* Problem 551
|
||||
|
|
0
project_euler/problem_207/__init__.py
Normal file
0
project_euler/problem_207/__init__.py
Normal file
98
project_euler/problem_207/sol1.py
Normal file
98
project_euler/problem_207/sol1.py
Normal file
|
@ -0,0 +1,98 @@
|
|||
"""
|
||||
|
||||
Project Euler Problem 207: https://projecteuler.net/problem=207
|
||||
|
||||
Problem Statement:
|
||||
For some positive integers k, there exists an integer partition of the form
|
||||
4**t = 2**t + k, where 4**t, 2**t, and k are all positive integers and t is a real
|
||||
number. The first two such partitions are 4**1 = 2**1 + 2 and
|
||||
4**1.5849625... = 2**1.5849625... + 6.
|
||||
Partitions where t is also an integer are called perfect.
|
||||
For any m ≥ 1 let P(m) be the proportion of such partitions that are perfect with
|
||||
k ≤ m.
|
||||
Thus P(6) = 1/2.
|
||||
In the following table are listed some values of P(m)
|
||||
|
||||
P(5) = 1/1
|
||||
P(10) = 1/2
|
||||
P(15) = 2/3
|
||||
P(20) = 1/2
|
||||
P(25) = 1/2
|
||||
P(30) = 2/5
|
||||
...
|
||||
P(180) = 1/4
|
||||
P(185) = 3/13
|
||||
|
||||
Find the smallest m for which P(m) < 1/12345
|
||||
|
||||
Solution:
|
||||
Equation 4**t = 2**t + k solved for t gives:
|
||||
t = log2(sqrt(4*k+1)/2 + 1/2)
|
||||
For t to be real valued, sqrt(4*k+1) must be an integer which is implemented in
|
||||
function check_t_real(k). For a perfect partition t must be an integer.
|
||||
To speed up significantly the search for partitions, instead of incrementing k by one
|
||||
per iteration, the next valid k is found by k = (i**2 - 1) / 4 with an integer i and
|
||||
k has to be a positive integer. If this is the case a partition is found. The partition
|
||||
is perfect if t os an integer. The integer i is increased with increment 1 until the
|
||||
proportion perfect partitions / total partitions drops under the given value.
|
||||
|
||||
"""
|
||||
|
||||
import math
|
||||
|
||||
|
||||
def check_partition_perfect(positive_integer: int) -> bool:
|
||||
"""
|
||||
|
||||
Check if t = f(positive_integer) = log2(sqrt(4*positive_integer+1)/2 + 1/2) is a
|
||||
real number.
|
||||
|
||||
>>> check_partition_perfect(2)
|
||||
True
|
||||
|
||||
>>> check_partition_perfect(6)
|
||||
False
|
||||
|
||||
"""
|
||||
|
||||
exponent = math.log2(math.sqrt(4 * positive_integer + 1) / 2 + 1 / 2)
|
||||
|
||||
return exponent == int(exponent)
|
||||
|
||||
|
||||
def solution(max_proportion: float = 1 / 12345) -> int:
|
||||
"""
|
||||
Find m for which the proportion of perfect partitions to total partitions is lower
|
||||
than max_proportion
|
||||
|
||||
>>> solution(1) > 5
|
||||
True
|
||||
|
||||
>>> solution(1/2) > 10
|
||||
True
|
||||
|
||||
>>> solution(3 / 13) > 185
|
||||
True
|
||||
|
||||
"""
|
||||
|
||||
total_partitions = 0
|
||||
perfect_partitions = 0
|
||||
|
||||
integer = 3
|
||||
while True:
|
||||
partition_candidate = (integer ** 2 - 1) / 4
|
||||
# if candidate is an integer, then there is a partition for k
|
||||
if partition_candidate == int(partition_candidate):
|
||||
partition_candidate = int(partition_candidate)
|
||||
total_partitions += 1
|
||||
if check_partition_perfect(partition_candidate):
|
||||
perfect_partitions += 1
|
||||
if perfect_partitions > 0:
|
||||
if perfect_partitions / total_partitions < max_proportion:
|
||||
return partition_candidate
|
||||
integer += 1
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(f"{solution() = }")
|
Loading…
Reference in New Issue
Block a user