mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
Created problem_55 in project_euler (#2354)
* Create __init__.py * Add files via upload * Update sol1.py
This commit is contained in:
parent
2c0127d71a
commit
9aa10ca358
1
project_euler/problem_55/__init__.py
Normal file
1
project_euler/problem_55/__init__.py
Normal file
|
@ -0,0 +1 @@
|
|||
#
|
76
project_euler/problem_55/sol1.py
Normal file
76
project_euler/problem_55/sol1.py
Normal file
|
@ -0,0 +1,76 @@
|
|||
"""
|
||||
If we take 47, reverse and add, 47 + 74 = 121, which is palindromic.
|
||||
Not all numbers produce palindromes so quickly. For example,
|
||||
349 + 943 = 1292,
|
||||
1292 + 2921 = 4213
|
||||
4213 + 3124 = 7337
|
||||
That is, 349 took three iterations to arrive at a palindrome.
|
||||
Although no one has proved it yet, it is thought that some numbers, like 196,
|
||||
never produce a palindrome. A number that never forms a palindrome through the
|
||||
reverse and add process is called a Lychrel number. Due to the theoretical nature
|
||||
of these numbers, and for the purpose of this problem, we shall assume that a number
|
||||
is Lychrel until proven otherwise. In addition you are given that for every number
|
||||
below ten-thousand, it will either (i) become a palindrome in less than fifty
|
||||
iterations, or, (ii) no one, with all the computing power that exists, has managed
|
||||
so far to map it to a palindrome. In fact, 10677 is the first number to be shown
|
||||
to require over fifty iterations before producing a palindrome:
|
||||
4668731596684224866951378664 (53 iterations, 28-digits).
|
||||
|
||||
Surprisingly, there are palindromic numbers that are themselves Lychrel numbers;
|
||||
the first example is 4994.
|
||||
How many Lychrel numbers are there below ten-thousand?
|
||||
"""
|
||||
|
||||
|
||||
def is_palindrome(n: int) -> bool:
|
||||
"""
|
||||
Returns True if a number is palindrome.
|
||||
>>> is_palindrome(12567321)
|
||||
False
|
||||
>>> is_palindrome(1221)
|
||||
True
|
||||
>>> is_palindrome(9876789)
|
||||
True
|
||||
"""
|
||||
return str(n) == str(n)[::-1]
|
||||
|
||||
|
||||
def sum_reverse(n: int) -> int:
|
||||
"""
|
||||
Returns the sum of n and reverse of n.
|
||||
>>> sum_reverse(123)
|
||||
444
|
||||
>>> sum_reverse(3478)
|
||||
12221
|
||||
>>> sum_reverse(12)
|
||||
33
|
||||
"""
|
||||
return int(n) + int(str(n)[::-1])
|
||||
|
||||
|
||||
def compute_lychrel_nums(limit: int) -> int:
|
||||
"""
|
||||
Returns the count of all lychrel numbers below limit.
|
||||
>>> compute_lychrel_nums(10000)
|
||||
249
|
||||
>>> compute_lychrel_nums(5000)
|
||||
76
|
||||
>>> compute_lychrel_nums(1000)
|
||||
13
|
||||
"""
|
||||
lychrel_nums = []
|
||||
for num in range(1, limit):
|
||||
iterations = 0
|
||||
a = num
|
||||
while iterations < 50:
|
||||
num = sum_reverse(num)
|
||||
iterations += 1
|
||||
if is_palindrome(num):
|
||||
break
|
||||
else:
|
||||
lychrel_nums.append(a)
|
||||
return len(lychrel_nums)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(f"{compute_lychrel_nums(10000) = }")
|
Loading…
Reference in New Issue
Block a user